Measurements of the Inorganic Scale Buildup Rate on Downhole Completion Equipment – Debris Barrier Screens

T. Morrow, Tariq Al-Daghar, A. Troshko, Caroline Schell, M. W. Keller, S. Shirazi, K. Roberts
{"title":"Measurements of the Inorganic Scale Buildup Rate on Downhole Completion Equipment – Debris Barrier Screens","authors":"T. Morrow, Tariq Al-Daghar, A. Troshko, Caroline Schell, M. W. Keller, S. Shirazi, K. Roberts","doi":"10.2118/193311-MS","DOIUrl":null,"url":null,"abstract":"\n The long-term development plan for a giant oil field offshore Abu Dhabi calls for new extended reach wells drilled from artificial islands. The existing wells in this field have historically suffered from inorganic sulfate-based scale deposition in the production tubing which is mitigated by periodic scale inhibition squeeze treatments. The new extended reach wells will have more sophisticated lower completions, including limited-entry liners (LELs) and inflow control devices (ICDs) with external debris barriers. It is currently planned to mitigate inorganic scale in these wells with periodic coiled tubing or bullhead scale inhibition squeeze treatments, which are anticipated to be more challenging and costly due to the extended reach. It is unknown as to whether these types of completion equipment are susceptible to scale deposition or how much scale deposition can be tolerated before well productivity is impacted.\n Knowledge of the rate of scale buildup on ICDs and LELs versus the volume of water produced through the devices is an important factor for choosing the optimum frequency for scale inhibition squeeze treatments to mitigate scale in these completions while keeping operational costs down. A two-phase laboratory study is currently underway to assess the susceptibility of ICDs to scale deposition. The first phase of the study will focus on the potential for strontium sulfate scale deposition on the debris barrier upstream of the ICD.\n This paper reports the experimental design and results of laboratory scale deposition experiments on a series of debris barrier test coupons with the goal of estimating the rate of scale buildup on the full-size ICD debris barriers, and the volume of scaling brine that can be produced through the ICD debris barrier (in the absence of any scale inhibitor chemical) without risking significant plugging.","PeriodicalId":11014,"journal":{"name":"Day 1 Mon, November 12, 2018","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 12, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193311-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The long-term development plan for a giant oil field offshore Abu Dhabi calls for new extended reach wells drilled from artificial islands. The existing wells in this field have historically suffered from inorganic sulfate-based scale deposition in the production tubing which is mitigated by periodic scale inhibition squeeze treatments. The new extended reach wells will have more sophisticated lower completions, including limited-entry liners (LELs) and inflow control devices (ICDs) with external debris barriers. It is currently planned to mitigate inorganic scale in these wells with periodic coiled tubing or bullhead scale inhibition squeeze treatments, which are anticipated to be more challenging and costly due to the extended reach. It is unknown as to whether these types of completion equipment are susceptible to scale deposition or how much scale deposition can be tolerated before well productivity is impacted. Knowledge of the rate of scale buildup on ICDs and LELs versus the volume of water produced through the devices is an important factor for choosing the optimum frequency for scale inhibition squeeze treatments to mitigate scale in these completions while keeping operational costs down. A two-phase laboratory study is currently underway to assess the susceptibility of ICDs to scale deposition. The first phase of the study will focus on the potential for strontium sulfate scale deposition on the debris barrier upstream of the ICD. This paper reports the experimental design and results of laboratory scale deposition experiments on a series of debris barrier test coupons with the goal of estimating the rate of scale buildup on the full-size ICD debris barriers, and the volume of scaling brine that can be produced through the ICD debris barrier (in the absence of any scale inhibitor chemical) without risking significant plugging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
井下完井设备上无机结垢速率的测量——碎屑屏障筛管
阿布扎比海上一个巨型油田的长期开发计划要求在人工岛屿上钻探新的大位移井。该油田现有的油井在生产油管中一直存在无机硫酸盐结垢的问题,通过定期的阻垢挤压处理可以缓解这一问题。新的大位移井将采用更复杂的下完井,包括有限进入尾管(LELs)和带有外部碎屑屏障的流入控制装置(icd)。目前的计划是通过定期连续油管或井口阻垢挤压处理来缓解这些井的无机结垢,由于井的延伸范围更大,预计这些方法更具挑战性,成本也更高。目前还不清楚这些类型的完井设备是否容易结垢,也不清楚在影响油井产能之前能容忍多大程度的结垢。了解icd和lls上结垢的速率与设备产水量之间的关系,是选择最佳阻垢挤压处理频率的重要因素,从而在降低完井作业成本的同时减少结垢。目前正在进行一项两阶段的实验室研究,以评估icd对水垢沉积的敏感性。该研究的第一阶段将重点关注ICD上游碎屑屏障上硫酸锶结垢沉积的可能性。本文报道了一系列碎屑屏障试验的实验设计和实验室结垢实验结果,目的是估计全尺寸ICD碎屑屏障上结垢的速率,以及在没有任何阻垢剂的情况下,通过ICD碎屑屏障产生的结垢盐水的体积,而不会造成严重的堵塞风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Does the kappa number method accurately reflect lignin content in nonwood pulps? Using multistage models to evaluate how pulp washing after the first extraction stage impacts elemental chlorine-free bleach demand Understanding the risks and rewards of using 50% vs. 10% strength peroxide in pulp bleach plants Understanding the pulping and bleaching performances of eucalyptus woods affected by physiological disturbance Measurements of the Inorganic Scale Buildup Rate on Downhole Completion Equipment – Debris Barrier Screens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1