Victor Pollex, Timo Feld, F. Slomka, Ulrich Margull, Ralph Mader, G. Wirrer
{"title":"Sufficient real-time analysis for an engine control unit with constant angular velocities","authors":"Victor Pollex, Timo Feld, F. Slomka, Ulrich Margull, Ralph Mader, G. Wirrer","doi":"10.1145/2516821.2516838","DOIUrl":null,"url":null,"abstract":"Engine control units in the automotive industry are particular challenging real-time systems regarding their real-time analysis. Some of the tasks of such an engine control unit are triggered by the engine, i.e. the faster the angular velocity of the engine, the more frequent the tasks are executed. Furthermore, the execution time of a task may vary with the angular velocity of the engine. As a result the worst case does not necessarily occur when all tasks are activated simultaneously. Hence this behavior cannot be addressed appropriately with the currently available real-time analysis methods. In this paper we make a first step towards a real-time analysis for an engine control unit. We present a sufficient real-time analysis assuming that the angular velocity of the engine is arbitrary but fixed.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"7 1","pages":"1335-1338"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2516821.2516838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Engine control units in the automotive industry are particular challenging real-time systems regarding their real-time analysis. Some of the tasks of such an engine control unit are triggered by the engine, i.e. the faster the angular velocity of the engine, the more frequent the tasks are executed. Furthermore, the execution time of a task may vary with the angular velocity of the engine. As a result the worst case does not necessarily occur when all tasks are activated simultaneously. Hence this behavior cannot be addressed appropriately with the currently available real-time analysis methods. In this paper we make a first step towards a real-time analysis for an engine control unit. We present a sufficient real-time analysis assuming that the angular velocity of the engine is arbitrary but fixed.