{"title":"Truncation: all the news that fits we'll print","authors":"J. Hailpern, N. Venkata, Marina Danilevsky","doi":"10.1145/2644866.2644869","DOIUrl":null,"url":null,"abstract":"A news article generally contains a high-level overview of the facts early on, followed by paragraphs of more detailed information. This structure allows copy editors to truncate the latter paragraphs of an article in order to satisfy space limitations without losing critical information. Existing approaches to this problem of automatic multi-article layout focus exclusively on maximizing content and aesthetics. However, no algorithm can determine how \"good\" a truncation point is based on the semantic content, or article readability. Yet, disregarding the semantic information within the article can lead to either overly aggressive cutting, thereby eliminating key content and potentially confusing the reader; conversely, it may set too generous of a truncation point, thus leaving in superfluous content and making automatic layout more difficult. This is one of the remaining challenges on the path from manual layouts to fully automated processes with high quality output. In this work, we present a new semantic-focused approach to rate the quality of a truncation point. We built models based on results from an extensive user study on over 700 news articles. Further results show that existing techniques over-cut content. We demonstrate the layout impact through a second evaluation that implements our models in the first layout approach that integrates both layout and semantic quality. The primary contribution of this work is the demonstration that semantic-based modeling is critical for high-quality automated document synthesis within a real-world context.","PeriodicalId":91385,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","volume":"90 1","pages":"165-174"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2644866.2644869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A news article generally contains a high-level overview of the facts early on, followed by paragraphs of more detailed information. This structure allows copy editors to truncate the latter paragraphs of an article in order to satisfy space limitations without losing critical information. Existing approaches to this problem of automatic multi-article layout focus exclusively on maximizing content and aesthetics. However, no algorithm can determine how "good" a truncation point is based on the semantic content, or article readability. Yet, disregarding the semantic information within the article can lead to either overly aggressive cutting, thereby eliminating key content and potentially confusing the reader; conversely, it may set too generous of a truncation point, thus leaving in superfluous content and making automatic layout more difficult. This is one of the remaining challenges on the path from manual layouts to fully automated processes with high quality output. In this work, we present a new semantic-focused approach to rate the quality of a truncation point. We built models based on results from an extensive user study on over 700 news articles. Further results show that existing techniques over-cut content. We demonstrate the layout impact through a second evaluation that implements our models in the first layout approach that integrates both layout and semantic quality. The primary contribution of this work is the demonstration that semantic-based modeling is critical for high-quality automated document synthesis within a real-world context.