An ensemble approach for text document clustering using Wikipedia concepts

Seyednaser Nourashrafeddin, E. Milios, D. Arnold
{"title":"An ensemble approach for text document clustering using Wikipedia concepts","authors":"Seyednaser Nourashrafeddin, E. Milios, D. Arnold","doi":"10.1145/2644866.2644868","DOIUrl":null,"url":null,"abstract":"Most text clustering algorithms represent a corpus as a document-term matrix in the bag of words model. The feature values are computed based on term frequencies in documents and no semantic relatedness between terms is considered. Therefore, two semantically similar documents may sit in different clusters if they do not share any terms. One solution to this problem is to enrich the document representation using an external resource like Wikipedia. We propose a new way to integrate Wikipedia concepts in partitional text document clustering in this work. A text corpus is first represented as a document-term matrix and a document-concept matrix. Terms that exist in the corpus are then clustered based on the document-term representation. Given the term clusters, we propose two methods, one based on the document-term representation and the other one based on the document-concept representation, to find two sets of seed documents. The two sets are then used in our text clustering algorithm in an ensemble approach to cluster documents. The experimental results show that even though the document-concept representations do not result in good document clusters per se, integrating them in our ensemble approach improves the quality of document clusters significantly.","PeriodicalId":91385,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","volume":"32 1","pages":"107-116"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2644866.2644868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Most text clustering algorithms represent a corpus as a document-term matrix in the bag of words model. The feature values are computed based on term frequencies in documents and no semantic relatedness between terms is considered. Therefore, two semantically similar documents may sit in different clusters if they do not share any terms. One solution to this problem is to enrich the document representation using an external resource like Wikipedia. We propose a new way to integrate Wikipedia concepts in partitional text document clustering in this work. A text corpus is first represented as a document-term matrix and a document-concept matrix. Terms that exist in the corpus are then clustered based on the document-term representation. Given the term clusters, we propose two methods, one based on the document-term representation and the other one based on the document-concept representation, to find two sets of seed documents. The two sets are then used in our text clustering algorithm in an ensemble approach to cluster documents. The experimental results show that even though the document-concept representations do not result in good document clusters per se, integrating them in our ensemble approach improves the quality of document clusters significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用维基百科概念的文本文档聚类的集成方法
大多数文本聚类算法在词包模型中将语料库表示为文档-术语矩阵。特征值是根据文档中的词频率计算的,不考虑词之间的语义相关性。因此,如果两个语义相似的文档不共享任何术语,它们可能位于不同的集群中。这个问题的一个解决方案是使用像Wikipedia这样的外部资源来丰富文档表示。本文提出了一种新的方法,将维基百科概念整合到部分文本文档聚类中。文本语料库首先表示为文档术语矩阵和文档概念矩阵。然后根据文档术语表示对语料库中存在的术语进行聚类。在给定术语聚类的情况下,我们提出了两种方法来寻找两组种子文档,一种是基于文档术语表示,另一种是基于文档概念表示。然后在我们的文本聚类算法中以集成方法使用这两个集合来聚类文档。实验结果表明,尽管文档概念表示本身不能产生良好的文档聚类,但将它们集成到我们的集成方法中可以显着提高文档聚类的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Notarial Archives, Valletta: Starting from Zero Truncation: all the news that fits we'll print Classifying and ranking search engine results as potential sources of plagiarism An ensemble approach for text document clustering using Wikipedia concepts Document changes: modeling, detection, storage and visualization (DChanges 2014)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1