Class-Specific Image Deblurring

Saeed Anwar, C. P. Huynh, F. Porikli
{"title":"Class-Specific Image Deblurring","authors":"Saeed Anwar, C. P. Huynh, F. Porikli","doi":"10.1109/ICCV.2015.64","DOIUrl":null,"url":null,"abstract":"In image deblurring, a fundamental problem is that the blur kernel suppresses a number of spatial frequencies that are difficult to recover reliably. In this paper, we explore the potential of a class-specific image prior for recovering spatial frequencies attenuated by the blurring process. Specifically, we devise a prior based on the class-specific subspace of image intensity responses to band-pass filters. We learn that the aggregation of these subspaces across all frequency bands serves as a good class-specific prior for the restoration of frequencies that cannot be recovered with generic image priors. In an extensive validation, our method, equipped with the above prior, yields greater image quality than many state-of-the-art methods by up to 5 dB in terms of image PSNR, across various image categories including portraits, cars, cats, pedestrians and household objects.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"9 1","pages":"495-503"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

In image deblurring, a fundamental problem is that the blur kernel suppresses a number of spatial frequencies that are difficult to recover reliably. In this paper, we explore the potential of a class-specific image prior for recovering spatial frequencies attenuated by the blurring process. Specifically, we devise a prior based on the class-specific subspace of image intensity responses to band-pass filters. We learn that the aggregation of these subspaces across all frequency bands serves as a good class-specific prior for the restoration of frequencies that cannot be recovered with generic image priors. In an extensive validation, our method, equipped with the above prior, yields greater image quality than many state-of-the-art methods by up to 5 dB in terms of image PSNR, across various image categories including portraits, cars, cats, pedestrians and household objects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特定类的图像去模糊
在图像去模糊中,一个基本问题是模糊核抑制了一些难以可靠恢复的空间频率。在本文中,我们探讨了一类特定的图像先验恢复空间频率衰减的模糊过程的潜力。具体来说,我们设计了一个基于类特定子空间的图像强度响应带通滤波器的先验。我们了解到,这些子空间在所有频带上的聚合可以作为一个很好的类特定先验,用于恢复用一般图像先验无法恢复的频率。在广泛的验证中,我们的方法配备了上述先验,在图像PSNR方面比许多最先进的方法产生更高的图像质量,在各种图像类别中,包括人像,汽车,猫,行人和家居物品,图像质量最高可达5 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Listening with Your Eyes: Towards a Practical Visual Speech Recognition System Using Deep Boltzmann Machines Self-Calibration of Optical Lenses Single Image Pop-Up from Discriminatively Learned Parts Multi-task Recurrent Neural Network for Immediacy Prediction Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1