The Performance Argument for Blockchain-based Edge DNS Caching

James Choncholas, Ketan Bhardwaj, Ada Gavrilovska
{"title":"The Performance Argument for Blockchain-based Edge DNS Caching","authors":"James Choncholas, Ketan Bhardwaj, Ada Gavrilovska","doi":"10.1145/3453142.3491288","DOIUrl":null,"url":null,"abstract":"The Domain Name System (DNS,) a standard way of looking up IP addresses of Internet services, has served the Internet ecosystem well. However with the advent of edge computing, it falls short of many desirable properties. These include accurate fine-grained geographic localization of edge services, fast look-ups, and ensuring record freshness and cache integrity for end users. To satisfy these properties we consider blockchain-based solutions, a counter-intuitive approach as blockchain is not often associated with performance or the latency requirements of the edge. Despite this, we argue blockchain can address the shortcomings we've identified in DNS specifically in the edge context. We've found blockchain-based solutions are not sufficient as is, thus we present GeoENS - a prototype based on the Ethereum blockchain suitable for, and enabled by, the edge. It achieves these goals via novel record organization for smart contract, push-based record invalidation, and a look through cache. Given the skepticism of blockchain to out-perform DNS, we provide preliminary results which show GeoENS achieves its goals of fine-grained geo-localization accurate to ±20 meters, fast query latency for non-cached records under 50 ms, and cache freshness at edge scale of 10 minutes (vs. 3 hour DNS TTLs.) GeoENS does this with negligible bandwidth and CPU load overhead and reasonable storage requirements in the proposed deployment scenario.","PeriodicalId":6779,"journal":{"name":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"17 1","pages":"312-318"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453142.3491288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Domain Name System (DNS,) a standard way of looking up IP addresses of Internet services, has served the Internet ecosystem well. However with the advent of edge computing, it falls short of many desirable properties. These include accurate fine-grained geographic localization of edge services, fast look-ups, and ensuring record freshness and cache integrity for end users. To satisfy these properties we consider blockchain-based solutions, a counter-intuitive approach as blockchain is not often associated with performance or the latency requirements of the edge. Despite this, we argue blockchain can address the shortcomings we've identified in DNS specifically in the edge context. We've found blockchain-based solutions are not sufficient as is, thus we present GeoENS - a prototype based on the Ethereum blockchain suitable for, and enabled by, the edge. It achieves these goals via novel record organization for smart contract, push-based record invalidation, and a look through cache. Given the skepticism of blockchain to out-perform DNS, we provide preliminary results which show GeoENS achieves its goals of fine-grained geo-localization accurate to ±20 meters, fast query latency for non-cached records under 50 ms, and cache freshness at edge scale of 10 minutes (vs. 3 hour DNS TTLs.) GeoENS does this with negligible bandwidth and CPU load overhead and reasonable storage requirements in the proposed deployment scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区块链的边缘DNS缓存的性能参数
域名系统(DNS)是查找互联网服务IP地址的标准方式,它很好地服务于互联网生态系统。然而,随着边缘计算的出现,它缺乏许多理想的特性。其中包括边缘服务的精确细粒度地理定位、快速查找以及确保最终用户的记录新鲜度和缓存完整性。为了满足这些属性,我们考虑了基于区块链的解决方案,这是一种反直觉的方法,因为区块链通常与边缘的性能或延迟要求无关。尽管如此,我们认为区块链可以解决我们在DNS中发现的缺点,特别是在边缘环境中。我们发现基于区块链的解决方案是不够的,因此我们提出了GeoENS——一个基于以太坊区块链的原型,适合并由边缘启用。它通过智能合约的新颖记录组织、基于推送的记录失效和查看缓存来实现这些目标。考虑到对区块链优于DNS的怀疑,我们提供的初步结果表明,GeoENS实现了精确到±20米的细粒度地理定位目标,非缓存记录的快速查询延迟低于50毫秒,边缘规模为10分钟的缓存新鲜度(相比之下,DNS TTLs为3小时)。在建议的部署场景中,GeoENS可以忽略带宽和CPU负载开销以及合理的存储需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Driven Optimal Control Decision-Making System for Multiple Autonomous Vehicles The Performance Argument for Blockchain-based Edge DNS Caching LotteryFL: Empower Edge Intelligence with Personalized and Communication-Efficient Federated Learning Collaborative Cloud-Edge-Local Computation Offloading for Multi-Component Applications Poster: Enabling Flexible Edge-assisted XR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1