Condition monitoring of wind-power units using the Derivative-free nonlinear Kalman Filter

G. Rigatos, N. Zervos, D. Serpanos, V. Siadimas, P. Siano, M. Abbaszadeh
{"title":"Condition monitoring of wind-power units using the Derivative-free nonlinear Kalman Filter","authors":"G. Rigatos, N. Zervos, D. Serpanos, V. Siadimas, P. Siano, M. Abbaszadeh","doi":"10.1109/INDIN.2018.8472103","DOIUrl":null,"url":null,"abstract":"The article proposes a method for diagnosing faults and cyberattacks in electric power generation units that consist of a wind-turbine and of an asynchronous (DFIG) generator. The method relies on a differential flatness theory-based implementation of the nonlinear Kalman Filter, known as Derivative-free nonlinear Kalman Filter. The estimated outputs provided by the Kalman filter are subtracted from the real outputs measured from the power unit, thus generating the residuals sequence. It is proven that the sum of the squares of the residuals vectors, weighted by the inverse of the residuals covariance matrix, stands for a stochastic variable that follows the χ2 distribution. By exploiting the statistical properties of the χ2 distribution one can define confidence intervals which allow for deciding at a high certainty level about the appearance of a fault or cyberattack in the wind-power system.","PeriodicalId":6467,"journal":{"name":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","volume":"120 1","pages":"472-477"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2018.8472103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The article proposes a method for diagnosing faults and cyberattacks in electric power generation units that consist of a wind-turbine and of an asynchronous (DFIG) generator. The method relies on a differential flatness theory-based implementation of the nonlinear Kalman Filter, known as Derivative-free nonlinear Kalman Filter. The estimated outputs provided by the Kalman filter are subtracted from the real outputs measured from the power unit, thus generating the residuals sequence. It is proven that the sum of the squares of the residuals vectors, weighted by the inverse of the residuals covariance matrix, stands for a stochastic variable that follows the χ2 distribution. By exploiting the statistical properties of the χ2 distribution one can define confidence intervals which allow for deciding at a high certainty level about the appearance of a fault or cyberattack in the wind-power system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无导数非线性卡尔曼滤波的风力发电机组状态监测
本文提出了一种风力发电机组和异步(DFIG)发电机组成的发电机组故障和网络攻击诊断方法。该方法依赖于基于微分平坦度理论的非线性卡尔曼滤波器的实现,称为无导数非线性卡尔曼滤波器。卡尔曼滤波器提供的估计输出从功率单元测量的实际输出中减去,从而产生残差序列。证明了残差向量的平方和,由残差协方差矩阵的逆加权,代表遵循χ2分布的随机变量。通过利用χ2分布的统计特性,可以定义置信区间,该置信区间允许在高确定性水平上决定风电系统中故障或网络攻击的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPT - A decision-model-based Approach for Modeling Collaborative Assembly and Manufacturing Tasks Grey-box Model Identification and Fault Detection of Wind Turbines Using Artificial Neural Networks An Algorithmic Method for Tampering-Proof and Privacy-Preserving Smart Metering Digital Transformation as the Subject of Discursive Analysis Condition monitoring of wind-power units using the Derivative-free nonlinear Kalman Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1