{"title":"Grey-box Model Identification and Fault Detection of Wind Turbines Using Artificial Neural Networks","authors":"Reihane Rahimilarki, Zhiwei Gao","doi":"10.1109/INDIN.2018.8471943","DOIUrl":null,"url":null,"abstract":"In this paper, a model identification method based on artificial neural networks (ANN) for wind turbine dynamics is studied. Due to the fact that wind turbine has a nonlinear dynamics with partially measured states, ANN cannot be applied directly. To cope with this problem, first a Luenberger observer is designed to estimate the states (both measured and unmeasured ones) and then, for the nonlinear part, a multi-input multi-output (MIMO) back propagation neural-network based observer is proposed. By having an ANN model as the reference, a fault detection method is studied based on the residual of the system. This algorithm is evaluated in simulation on a 4.8 MW wind turbine benchmark and the results approve satisfactory performance of the proposed approach.","PeriodicalId":6467,"journal":{"name":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","volume":"43 1","pages":"647-652"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2018.8471943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper, a model identification method based on artificial neural networks (ANN) for wind turbine dynamics is studied. Due to the fact that wind turbine has a nonlinear dynamics with partially measured states, ANN cannot be applied directly. To cope with this problem, first a Luenberger observer is designed to estimate the states (both measured and unmeasured ones) and then, for the nonlinear part, a multi-input multi-output (MIMO) back propagation neural-network based observer is proposed. By having an ANN model as the reference, a fault detection method is studied based on the residual of the system. This algorithm is evaluated in simulation on a 4.8 MW wind turbine benchmark and the results approve satisfactory performance of the proposed approach.