Ji-Hoon Jeong, Keun-Tae Kim, Yong-Deok Yun, Seong-Whan Lee
{"title":"Design of a brain-controlled robot arm system based on upper-limb movement imagery","authors":"Ji-Hoon Jeong, Keun-Tae Kim, Yong-Deok Yun, Seong-Whan Lee","doi":"10.1109/IWW-BCI.2018.8311514","DOIUrl":null,"url":null,"abstract":"This paper presents a prototype for a brain-controlled robot arm system using a variety of upper-limb movement imagery. To do that, we have designed the experimental environment based on brain signals. The experimental system architecture was modularized into three main components: BMI, network, and control parts. Six subjects participated in our experiments. The subject performed various upper-limb actual movement and imagery task. Each task consisted of three different movement/imagery: Arm reaching tasks, hand grasping tasks, and wrist twisting tasks. We confirmed the classification accuracies are 22.65%, 50.79%, and 54.44%, respectively. Moreover, we will demonstrate that brain-controlled robot arm system can achieve a high-level task in multi-dimensional space.","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"3 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper presents a prototype for a brain-controlled robot arm system using a variety of upper-limb movement imagery. To do that, we have designed the experimental environment based on brain signals. The experimental system architecture was modularized into three main components: BMI, network, and control parts. Six subjects participated in our experiments. The subject performed various upper-limb actual movement and imagery task. Each task consisted of three different movement/imagery: Arm reaching tasks, hand grasping tasks, and wrist twisting tasks. We confirmed the classification accuracies are 22.65%, 50.79%, and 54.44%, respectively. Moreover, we will demonstrate that brain-controlled robot arm system can achieve a high-level task in multi-dimensional space.