Design of a brain-controlled robot arm system based on upper-limb movement imagery

Ji-Hoon Jeong, Keun-Tae Kim, Yong-Deok Yun, Seong-Whan Lee
{"title":"Design of a brain-controlled robot arm system based on upper-limb movement imagery","authors":"Ji-Hoon Jeong, Keun-Tae Kim, Yong-Deok Yun, Seong-Whan Lee","doi":"10.1109/IWW-BCI.2018.8311514","DOIUrl":null,"url":null,"abstract":"This paper presents a prototype for a brain-controlled robot arm system using a variety of upper-limb movement imagery. To do that, we have designed the experimental environment based on brain signals. The experimental system architecture was modularized into three main components: BMI, network, and control parts. Six subjects participated in our experiments. The subject performed various upper-limb actual movement and imagery task. Each task consisted of three different movement/imagery: Arm reaching tasks, hand grasping tasks, and wrist twisting tasks. We confirmed the classification accuracies are 22.65%, 50.79%, and 54.44%, respectively. Moreover, we will demonstrate that brain-controlled robot arm system can achieve a high-level task in multi-dimensional space.","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"3 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a prototype for a brain-controlled robot arm system using a variety of upper-limb movement imagery. To do that, we have designed the experimental environment based on brain signals. The experimental system architecture was modularized into three main components: BMI, network, and control parts. Six subjects participated in our experiments. The subject performed various upper-limb actual movement and imagery task. Each task consisted of three different movement/imagery: Arm reaching tasks, hand grasping tasks, and wrist twisting tasks. We confirmed the classification accuracies are 22.65%, 50.79%, and 54.44%, respectively. Moreover, we will demonstrate that brain-controlled robot arm system can achieve a high-level task in multi-dimensional space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于上肢运动图像的脑控机械臂系统设计
本文介绍了一种利用各种上肢运动图像的脑控机械臂系统的原型。为此,我们设计了基于大脑信号的实验环境。实验系统架构模块化为BMI、网络和控制三个主要部分。6名受试者参加了我们的实验。受试者完成各种上肢实际运动和想象任务。每个任务包括三个不同的动作/图像:手臂伸展任务、手抓任务和手腕扭曲任务。我们确认的分类准确率分别为22.65%、50.79%和54.44%。此外,我们将证明脑控机械臂系统可以在多维空间中完成高级任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embodied cognition Design of a brain-controlled robot arm system based on upper-limb movement imagery Applying deep-learning to a top-down SSVEP BMI BCI classification using locally generated CSP features Evaluation of outlier prevalence of density distribution in brain computed tomography: Comparison of kurtosis and quartile statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1