BCI classification using locally generated CSP features

Yongkoo Park, Wonzoo Chung
{"title":"BCI classification using locally generated CSP features","authors":"Yongkoo Park, Wonzoo Chung","doi":"10.1109/IWW-BCI.2018.8311492","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel motor imagery classification method in electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) using locally generated CSP features centered at each channel. By favoring the channels with the local CSP features exhibiting significant eigenvalue disparity in the classification stage, improved performance in classification accuracy can be achieved in comparison with the conventional globally optimized CSP feature, especially for small-sample setting environments. Simulation results confirm the significant performance improvement of the proposed method for BCI competition III dataset Iva using 18 channels in the motor area.","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"274 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In this paper, we present a novel motor imagery classification method in electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) using locally generated CSP features centered at each channel. By favoring the channels with the local CSP features exhibiting significant eigenvalue disparity in the classification stage, improved performance in classification accuracy can be achieved in comparison with the conventional globally optimized CSP feature, especially for small-sample setting environments. Simulation results confirm the significant performance improvement of the proposed method for BCI competition III dataset Iva using 18 channels in the motor area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用局部生成的CSP特征进行BCI分类
在本文中,我们提出了一种新的基于脑机接口(bci)的运动图像分类方法,该方法使用以每个通道为中心的局部生成的CSP特征。通过在分类阶段优先考虑具有显著特征值差异的局部CSP特征的通道,与传统的全局优化CSP特征相比,可以提高分类精度,特别是在小样本设置环境下。仿真结果证实了该方法在BCI竞赛III数据集Iva上的显著性能改进,该数据集在运动区域使用了18个通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embodied cognition Design of a brain-controlled robot arm system based on upper-limb movement imagery Applying deep-learning to a top-down SSVEP BMI BCI classification using locally generated CSP features Evaluation of outlier prevalence of density distribution in brain computed tomography: Comparison of kurtosis and quartile statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1