Personal Identification Using Ultrawideband Radar Measurement of Walking and Sitting Motions and a Convolutional Neural Network

T. Sakamoto
{"title":"Personal Identification Using Ultrawideband Radar Measurement of Walking and Sitting Motions and a Convolutional Neural Network","authors":"T. Sakamoto","doi":"10.1587/transinf.2018EDP7435","DOIUrl":null,"url":null,"abstract":"This study proposes a personal identification technique that applies machine learning with a two-layered convolutional neural network to spectrogram images obtained from radar echoes of a target person in motion. The walking and sitting motions of six participants were measured using an ultrawideband radar system. Time-frequency analysis was applied to the radar signal to generate spectrogram images containing the micro-Doppler components associated with limb movements. A convolutional neural network was trained using the spectrogram images with personal labels to achieve radar-based personal identification. The personal identification accuracies were evaluated experimentally to demonstrate the effectiveness of the proposed technique.","PeriodicalId":8487,"journal":{"name":"arXiv: Signal Processing","volume":"143 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transinf.2018EDP7435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This study proposes a personal identification technique that applies machine learning with a two-layered convolutional neural network to spectrogram images obtained from radar echoes of a target person in motion. The walking and sitting motions of six participants were measured using an ultrawideband radar system. Time-frequency analysis was applied to the radar signal to generate spectrogram images containing the micro-Doppler components associated with limb movements. A convolutional neural network was trained using the spectrogram images with personal labels to achieve radar-based personal identification. The personal identification accuracies were evaluated experimentally to demonstrate the effectiveness of the proposed technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用超宽带雷达测量行走和坐姿运动和卷积神经网络的个人识别
本研究提出了一种个人识别技术,该技术将机器学习与双层卷积神经网络应用于从运动中的目标人的雷达回波中获得的频谱图图像。研究人员使用超宽带雷达系统测量了六名参与者的行走和坐姿。对雷达信号进行时频分析,生成包含与肢体运动相关的微多普勒分量的频谱图图像。利用带有个人标签的光谱图图像训练卷积神经网络,实现基于雷达的个人识别。通过实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-Dimensional Localization of Active Aerial Targets Using a Single Terrestrial Receiver Site Feasibility Study on Intra-Grid Location Estimation Using Power ENF Signals Photonic perceptron at Giga-OP/s speeds with Kerr microcombs for scalable optical neural networks Nonlinear methods to quantify Movement Variability in Human-Humanoid Interaction Activities Design, Implementation, Comparison, and Performance analysis between Analog Butterworth and Chebyshev-I Low Pass Filter Using Approximation, Python and Proteus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1