P. Wessely, Frank Wessely, Emrah Birinci, Bernadette Riedinger, U. Schwalke
{"title":"Hysteresis of In Situ CCVD Grown Graphene Transistors","authors":"P. Wessely, Frank Wessely, Emrah Birinci, Bernadette Riedinger, U. Schwalke","doi":"10.1149/2.019204ESL","DOIUrl":null,"url":null,"abstract":"In this paper we report on a novel method to fabricate graphene transistors directly on oxidized silicon wafers without the need to transfer graphene. By means of catalytic chemical vapor deposition (CCVD) the in situ grown monolayer graphene field-effect transistors (MoLGFETs) and bilayer graphene field-effect transistors (BiLGFETs) are realized directly on oxidized silicon substrate. In situ CCVD grown BiLGFETs possess unipolar p-type device characteristics with an extremely high on/off-current ratio up to 1 × 10 7 . With this novel fabrication method hundreds of large scale in situ CCVD grown graphene FETs are realized simultaneously on one 2’’ wafer in a silicon CMOS compatible process.","PeriodicalId":11627,"journal":{"name":"Electrochemical and Solid State Letters","volume":"235 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical and Solid State Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.019204ESL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
In this paper we report on a novel method to fabricate graphene transistors directly on oxidized silicon wafers without the need to transfer graphene. By means of catalytic chemical vapor deposition (CCVD) the in situ grown monolayer graphene field-effect transistors (MoLGFETs) and bilayer graphene field-effect transistors (BiLGFETs) are realized directly on oxidized silicon substrate. In situ CCVD grown BiLGFETs possess unipolar p-type device characteristics with an extremely high on/off-current ratio up to 1 × 10 7 . With this novel fabrication method hundreds of large scale in situ CCVD grown graphene FETs are realized simultaneously on one 2’’ wafer in a silicon CMOS compatible process.