Inter-Satellite Link Prediction for Non-Terrestrial Networks Using Supervised Learning

Estel Ferrer, Josep Escrig, J. A. Ruiz-de-Azua
{"title":"Inter-Satellite Link Prediction for Non-Terrestrial Networks Using Supervised Learning","authors":"Estel Ferrer, Josep Escrig, J. A. Ruiz-de-Azua","doi":"10.1109/EuCNC/6GSummit58263.2023.10188275","DOIUrl":null,"url":null,"abstract":"Distributed Space Systems (DSS) are becoming increasingly popular in the space industry as they integrate advancements in 6G and Non-Terrestrial Networks concepts to offer innovative and efficient solutions for satellite communication and data transmission. In those DSS where communication be-tween heterogeneous satellites is required, achieving autonomous cooperation while minimizing energy consumption is crucial (especially in sparse constellations with nano-satellites). This work proposes an autonomous and scalable solution based on a Supervised Learning model that enables heterogeneous satellites in circular polar Low Earth Orbits to predict their encounters with other satellites given the orbital elements and assuming isotropic antenna patterns. The proposed solution obtains an accuracy of around 90 % when evaluated with realistic data from real Celestrak satellites. This work could be considered the first stage of a promising and alternative approach in the field of DSS.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"5 1","pages":"258-263"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed Space Systems (DSS) are becoming increasingly popular in the space industry as they integrate advancements in 6G and Non-Terrestrial Networks concepts to offer innovative and efficient solutions for satellite communication and data transmission. In those DSS where communication be-tween heterogeneous satellites is required, achieving autonomous cooperation while minimizing energy consumption is crucial (especially in sparse constellations with nano-satellites). This work proposes an autonomous and scalable solution based on a Supervised Learning model that enables heterogeneous satellites in circular polar Low Earth Orbits to predict their encounters with other satellites given the orbital elements and assuming isotropic antenna patterns. The proposed solution obtains an accuracy of around 90 % when evaluated with realistic data from real Celestrak satellites. This work could be considered the first stage of a promising and alternative approach in the field of DSS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于监督学习的非地面网络卫星间链路预测
分布式空间系统(DSS)在航天工业中越来越受欢迎,因为它们集成了6G和非地面网络概念的进步,为卫星通信和数据传输提供了创新和高效的解决方案。在需要异构卫星之间通信的DSS中,实现自主合作同时最小化能耗至关重要(特别是在具有纳米卫星的稀疏星座中)。这项工作提出了一种基于监督学习模型的自主和可扩展的解决方案,该模型使圆形极地低地球轨道上的异构卫星能够在给定轨道元素和假设各向同性天线方向图的情况下预测它们与其他卫星的相遇。当使用实际Celestrak卫星的真实数据进行评估时,所提出的解决方案的精度达到90%左右。这项工作可以被认为是发展支助事务领域一个有前途的替代办法的第一阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
385
期刊最新文献
Undersampling and SNR Degradation in Practical Direct RF Sampling Systems Research Challenges in Trustworthy Artificial Intelligence and Computing for Health: The Case of the PRE-ACT project Inter-Satellite Link Prediction for Non-Terrestrial Networks Using Supervised Learning AI-Powered Edge Computing Evolution for Beyond 5G Communication Networks Phase Modulation-based Fronthaul Network for 5G mmWave FR-2 Signal Transmission over Hybrid Links
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1