Tunable plasmon-induced transparentcy in bilayer graphene metamaterials

Jiang-Yu Liu, Tie-jun Huang, Pu‐Kun Liu
{"title":"Tunable plasmon-induced transparentcy in bilayer graphene metamaterials","authors":"Jiang-Yu Liu, Tie-jun Huang, Pu‐Kun Liu","doi":"10.1109/PIERS-FALL.2017.8293582","DOIUrl":null,"url":null,"abstract":"The tunable plasmon-induced transparency (PIT) metamaterial structures composed of periodically patterned graphene microholes and microribbons are presented and numerically investigated. The interaction between plasmonic modes that lead to the PIT effect is studied in detail by analyzing the field distributions. A coupled Lorentz oscillator model is used to explain the mechanism of the PIT effect. The transparency window of PIT structures can be dynamically tuned by varying the Fermi level of the graphene. The tunable graphene PIT device may have potential applications in designing optical switching devices, ultra-compact sensors and slow light devices in the THz region.","PeriodicalId":39469,"journal":{"name":"Advances in Engineering Education","volume":"176 1","pages":"2638-2640"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIERS-FALL.2017.8293582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

The tunable plasmon-induced transparency (PIT) metamaterial structures composed of periodically patterned graphene microholes and microribbons are presented and numerically investigated. The interaction between plasmonic modes that lead to the PIT effect is studied in detail by analyzing the field distributions. A coupled Lorentz oscillator model is used to explain the mechanism of the PIT effect. The transparency window of PIT structures can be dynamically tuned by varying the Fermi level of the graphene. The tunable graphene PIT device may have potential applications in designing optical switching devices, ultra-compact sensors and slow light devices in the THz region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可调谐等离子体诱导双层石墨烯超材料的透明度
提出了由周期性图像化石墨烯微孔和微带组成的可调谐等离子体诱导透明(PIT)超材料结构,并对其进行了数值研究。通过对场分布的分析,详细研究了等离子体模式之间的相互作用导致PIT效应。用耦合洛伦兹振子模型解释了PIT效应的机理。通过改变石墨烯的费米能级,可以动态调节PIT结构的透明窗口。这种可调谐石墨烯PIT器件在设计光开关器件、超紧凑传感器和太赫兹区域的慢光器件方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Engineering Education
Advances in Engineering Education Social Sciences-Education
CiteScore
2.90
自引率
0.00%
发文量
8
期刊介绍: The journal publishes articles on a wide variety of topics related to documented advances in engineering education practice. Topics may include but are not limited to innovations in course and curriculum design, teaching, and assessment both within and outside of the classroom that have led to improved student learning.
期刊最新文献
Participation in a team-based, first-year engineering design course associated with improved teaming skills during senior capstone engineering design Diversity, inclusion, and equity in the engineering curriculum: Evaluating the efficacy of a new teaching module Video Length Preferences for Engineering Students: Case Study of a Flipped Software Course A Modernized Student- and Equity-Centered Teaching Strategy Software Solutions for Recovery of the Lost Data from Mobile Phones, Tablets and Computers, Used in the Educational Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1