Design of an accurate pedestrian detection system using modified HOG and LSVM

Reema Kalshaonkar, S. Kuwelkar
{"title":"Design of an accurate pedestrian detection system using modified HOG and LSVM","authors":"Reema Kalshaonkar, S. Kuwelkar","doi":"10.1109/CCAA.2017.8229945","DOIUrl":null,"url":null,"abstract":"This paper focuses on detecting a pedestrian in an image. This real time application aims for high detection accuracy as well as faster computation. For higher accuracy and detection rate Histogram of Oriented Gradients (HOG) algorithm is used. Further, Linear Support Vector Machine (LSVM) classification is used for faster and reliable classification. Since the HOG algorithm is compute expensive several modifications have been made in order to get the best results for real time application. We have used bilinear interpolation and L2-normalisation for more reliable output. Further since the data is linearly separable a LSVM is designed in Matlab. The proposed algorithm provides an accuracy of 93.27% with a high true positive rate of 92.27% and a minor false positive rate of 4%.","PeriodicalId":6627,"journal":{"name":"2017 International Conference on Computing, Communication and Automation (ICCCA)","volume":"1 1","pages":"957-962"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing, Communication and Automation (ICCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAA.2017.8229945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper focuses on detecting a pedestrian in an image. This real time application aims for high detection accuracy as well as faster computation. For higher accuracy and detection rate Histogram of Oriented Gradients (HOG) algorithm is used. Further, Linear Support Vector Machine (LSVM) classification is used for faster and reliable classification. Since the HOG algorithm is compute expensive several modifications have been made in order to get the best results for real time application. We have used bilinear interpolation and L2-normalisation for more reliable output. Further since the data is linearly separable a LSVM is designed in Matlab. The proposed algorithm provides an accuracy of 93.27% with a high true positive rate of 92.27% and a minor false positive rate of 4%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进HOG和LSVM的精确行人检测系统设计
本文主要研究图像中行人的检测问题。这个实时应用程序旨在提高检测精度和更快的计算速度。为了提高准确率和检出率,采用了直方图定向梯度(HOG)算法。进一步,采用线性支持向量机(Linear Support Vector Machine, LSVM)分类,实现更快、更可靠的分类。由于HOG算法计算量大,为了获得实时应用的最佳结果,对算法进行了一些修改。我们使用双线性插值和l2归一化来获得更可靠的输出。此外,由于数据是线性可分的,在Matlab中设计了一个LSVM。该算法的准确率为93.27%,其中真阳性率为92.27%,假阳性率为4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment analysis on product reviews BSS: Blockchain security over software defined network A detailed analysis of data consistency concepts in data exchange formats (JSON & XML) CBIR by cascading features & SVM ADANS: An agriculture domain question answering system using ontologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1