ADANS: An agriculture domain question answering system using ontologies

M. Devi, M. Dua
{"title":"ADANS: An agriculture domain question answering system using ontologies","authors":"M. Devi, M. Dua","doi":"10.1109/CCAA.2017.8229784","DOIUrl":null,"url":null,"abstract":"The research area of Question Answering (QA) is explored widely to provide an accurate answer to questions asked in natural languages. In the deep ocean of information, the Web, searching for a concise answer is quite a time taking task. The QA system does this task on behalf of the questioner. Recently with the introduction of the semantic web, the web is progressing towards linked data. This data is available in the form of Resource Description Format(RDF) and Web Ontology Language(OWL). Querying this data requires the query to be expressed in SPARQL Protocol and RDF Query Language(SPARQL). This paper presents a QA system on agriculture domain, the ADANS, to answer queries given in natural language. The system uses a combination of Natural Language Processing(NLP) and semantic web technologies. The system formulates an SPARQL from the queries given in natural language. The query loosening part of the system helps in retrieving some less precise answers in acceptable time.","PeriodicalId":6627,"journal":{"name":"2017 International Conference on Computing, Communication and Automation (ICCCA)","volume":"64 1","pages":"122-127"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing, Communication and Automation (ICCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAA.2017.8229784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The research area of Question Answering (QA) is explored widely to provide an accurate answer to questions asked in natural languages. In the deep ocean of information, the Web, searching for a concise answer is quite a time taking task. The QA system does this task on behalf of the questioner. Recently with the introduction of the semantic web, the web is progressing towards linked data. This data is available in the form of Resource Description Format(RDF) and Web Ontology Language(OWL). Querying this data requires the query to be expressed in SPARQL Protocol and RDF Query Language(SPARQL). This paper presents a QA system on agriculture domain, the ADANS, to answer queries given in natural language. The system uses a combination of Natural Language Processing(NLP) and semantic web technologies. The system formulates an SPARQL from the queries given in natural language. The query loosening part of the system helps in retrieving some less precise answers in acceptable time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADANS:一个使用本体的农业领域问答系统
问答(Question answer,简称QA)的研究领域被广泛探索,目的是为用自然语言提出的问题提供准确的答案。在信息的深海中,在网络上,寻找一个简洁的答案是一项相当耗时的任务。QA系统代表提问者完成这项任务。最近,随着语义网的引入,网络正朝着关联数据的方向发展。这些数据以资源描述格式(RDF)和Web本体语言(OWL)的形式提供。查询这些数据需要用SPARQL协议和RDF查询语言(SPARQL)来表示查询。本文提出了一个农业领域的问答系统——ADANS,用于回答用自然语言提出的问题。该系统结合了自然语言处理(NLP)和语义网技术。该系统从以自然语言给出的查询中形成SPARQL。系统的查询放松部分有助于在可接受的时间内检索一些不太精确的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment analysis on product reviews BSS: Blockchain security over software defined network A detailed analysis of data consistency concepts in data exchange formats (JSON & XML) CBIR by cascading features & SVM ADANS: An agriculture domain question answering system using ontologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1