J. Suzuki, K. Hirata, K. Iwami, A. Taguchi, N. Umeda
{"title":"Photochemical polishing of sapphire substrate based on nonadiabatic optical near-field etching","authors":"J. Suzuki, K. Hirata, K. Iwami, A. Taguchi, N. Umeda","doi":"10.1109/OMN.2013.6659089","DOIUrl":null,"url":null,"abstract":"In this study, photochemical polishing based on a nonadiabatic optical near-field etching to sapphire substrate is studied. A sapphire substrate with an initial roughness of Ra=6.00 nm was polished by 100 Pa Cl2 gas atmosphere under laser irradiation for 60 minutes, and smoothened into Ra= 1.91 nm. Due to the Gaussian intensity distribution in the laser beam section, there was in-plane distribution of surface roughness. Furthermore, etching time got longer, the roughness was increased. This result suggests nonadiabatic optical near-field etching to sapphire substrate has an optimal etching time, which agrees with a result of SiO2 substrate.","PeriodicalId":6334,"journal":{"name":"2013 International Conference on Optical MEMS and Nanophotonics (OMN)","volume":"36 1","pages":"121-122"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Optical MEMS and Nanophotonics (OMN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2013.6659089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, photochemical polishing based on a nonadiabatic optical near-field etching to sapphire substrate is studied. A sapphire substrate with an initial roughness of Ra=6.00 nm was polished by 100 Pa Cl2 gas atmosphere under laser irradiation for 60 minutes, and smoothened into Ra= 1.91 nm. Due to the Gaussian intensity distribution in the laser beam section, there was in-plane distribution of surface roughness. Furthermore, etching time got longer, the roughness was increased. This result suggests nonadiabatic optical near-field etching to sapphire substrate has an optimal etching time, which agrees with a result of SiO2 substrate.