Modelling Machine Learning Algorithms on Relational Data with Datalog

Nantia Makrynioti, N. Vasiloglou, E. Pasalic, V. Vassalos
{"title":"Modelling Machine Learning Algorithms on Relational Data with Datalog","authors":"Nantia Makrynioti, N. Vasiloglou, E. Pasalic, V. Vassalos","doi":"10.1145/3209889.3209893","DOIUrl":null,"url":null,"abstract":"The standard process of data science tasks is to prepare features inside a database, export them as a denormalized data frame and then apply machine learning algorithms. This process is not optimal for two reasons. First, it requires denormalization of the database that can convert a small data problem into a big data problem. The second shortcoming is that it assumes that the machine learning algorithm is disentangled from the relational model of the problem. That seems to be a serious limitation since the relational model contains very valuable domain expertise. In this paper we explore the use of convex optimization and specifically linear programming, for modelling machine learning algorithms on relational data in an integrated way with data processing operators. We are using SolverBlox, a framework that accepts as an input Datalog code and feeds it into a linear programming solver. We demonstrate the expression of common machine learning algorithms and present use case scenarios where combining data processing with modelling of optimization problems inside a database offers significant advantages.","PeriodicalId":92710,"journal":{"name":"Proceedings of the Second Workshop on Data Management for End-to-End Machine Learning. Workshop on Data Management for End-to-End Machine Learning (2nd : 2018 : Houston, Tex.)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Data Management for End-to-End Machine Learning. Workshop on Data Management for End-to-End Machine Learning (2nd : 2018 : Houston, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209889.3209893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The standard process of data science tasks is to prepare features inside a database, export them as a denormalized data frame and then apply machine learning algorithms. This process is not optimal for two reasons. First, it requires denormalization of the database that can convert a small data problem into a big data problem. The second shortcoming is that it assumes that the machine learning algorithm is disentangled from the relational model of the problem. That seems to be a serious limitation since the relational model contains very valuable domain expertise. In this paper we explore the use of convex optimization and specifically linear programming, for modelling machine learning algorithms on relational data in an integrated way with data processing operators. We are using SolverBlox, a framework that accepts as an input Datalog code and feeds it into a linear programming solver. We demonstrate the expression of common machine learning algorithms and present use case scenarios where combining data processing with modelling of optimization problems inside a database offers significant advantages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关系型数据的机器学习算法建模
数据科学任务的标准流程是在数据库中准备特征,将其导出为非规范化数据框架,然后应用机器学习算法。由于两个原因,这个过程不是最佳的。首先,它需要对数据库进行非规范化处理,从而将小数据问题转化为大数据问题。第二个缺点是它假设机器学习算法从问题的关系模型中解脱出来。这似乎是一个严重的限制,因为关系模型包含非常有价值的领域专业知识。在本文中,我们探索了凸优化,特别是线性规划的使用,以数据处理算子的集成方式对关系数据上的机器学习算法进行建模。我们使用的是SolverBlox,它是一个框架,可以接受输入Datalog代码,并将其输入到线性规划求解器中。我们展示了常见机器学习算法的表达,并给出了将数据处理与数据库内优化问题建模相结合的用例场景,这些场景具有显著的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling Machine Learning Algorithms on Relational Data with Datalog Towards Interactive Curation & Automatic Tuning of ML Pipelines Avatar: Large Scale Entity Resolution of Heterogeneous User Profiles Learning Efficiently Over Heterogeneous Databases: Sampling and Constraints to the Rescue Proceedings of the Second Workshop on Data Management for End-To-End Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1