Avatar: Large Scale Entity Resolution of Heterogeneous User Profiles

Janani Balaji, Chris Min, F. Javed, Yun Zhu
{"title":"Avatar: Large Scale Entity Resolution of Heterogeneous User Profiles","authors":"Janani Balaji, Chris Min, F. Javed, Yun Zhu","doi":"10.1145/3209889.3209892","DOIUrl":null,"url":null,"abstract":"Entity Resolution (ER), also known as record linkage or de-duplication, has been a long-standing problem in the data management space. Though an ER system follows an established pipeline involving the Blocking -> Matching -> Clustering components, the Matching forms the core element of an ER system. At CareerBuilder, we perform de-duplication of massive datasets of people profiles collected from disparate sources with varying informational content. In this paper, we discuss the challenges of de-duplicating inherently heterogeneous data and illustrate the end-to-end process of building a functional and scalable machine learning-based matching platform. We also provide an incremental framework to enable differential ER assimilation for continuous de-duplication workflows.","PeriodicalId":92710,"journal":{"name":"Proceedings of the Second Workshop on Data Management for End-to-End Machine Learning. Workshop on Data Management for End-to-End Machine Learning (2nd : 2018 : Houston, Tex.)","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Data Management for End-to-End Machine Learning. Workshop on Data Management for End-to-End Machine Learning (2nd : 2018 : Houston, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209889.3209892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Entity Resolution (ER), also known as record linkage or de-duplication, has been a long-standing problem in the data management space. Though an ER system follows an established pipeline involving the Blocking -> Matching -> Clustering components, the Matching forms the core element of an ER system. At CareerBuilder, we perform de-duplication of massive datasets of people profiles collected from disparate sources with varying informational content. In this paper, we discuss the challenges of de-duplicating inherently heterogeneous data and illustrate the end-to-end process of building a functional and scalable machine learning-based matching platform. We also provide an incremental framework to enable differential ER assimilation for continuous de-duplication workflows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
头像:异构用户配置文件的大规模实体分辨率
实体解析(ER),也称为记录链接或重复数据删除,是数据管理领域中一个长期存在的问题。虽然一个ER系统遵循一个既定的流程,包括阻塞->匹配->集群组件,但匹配构成了ER系统的核心元素。在凯业必达,我们对从不同来源、不同信息内容收集的大量个人资料集进行重复数据删除。在本文中,我们讨论了对固有异构数据进行重复数据删除的挑战,并说明了构建功能强大且可扩展的基于机器学习的匹配平台的端到端过程。我们还提供了一个增量框架,以实现连续重复数据删除工作流的差异ER同化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling Machine Learning Algorithms on Relational Data with Datalog Towards Interactive Curation & Automatic Tuning of ML Pipelines Avatar: Large Scale Entity Resolution of Heterogeneous User Profiles Learning Efficiently Over Heterogeneous Databases: Sampling and Constraints to the Rescue Proceedings of the Second Workshop on Data Management for End-To-End Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1