{"title":"High kt2×Q, multi-frequency lithium niobate resonators","authors":"Renyuan Wang, S. Bhave, K. Bhattacharjee","doi":"10.1109/MEMSYS.2013.6474203","DOIUrl":null,"url":null,"abstract":"This paper presents design and vacuum measurements of lithium niobate (LN) contour-mode resonators (CMR). By carefully positioning the interdigital transducer (IDT), we achieved CMRs with k<sub>t</sub><sup>2</sup>×Q of 7%*2150=148 (IDT @ node) or resonators with very high k<sub>t</sub><sup>2</sup> of 12.3% and spur-attenuated response (IDT @ anti-node). In addition, we demonstrated resonators with frequencies ranging from 400MHz to 800MHz on a single chip.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":"37 1","pages":"165-168"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
This paper presents design and vacuum measurements of lithium niobate (LN) contour-mode resonators (CMR). By carefully positioning the interdigital transducer (IDT), we achieved CMRs with kt2×Q of 7%*2150=148 (IDT @ node) or resonators with very high kt2 of 12.3% and spur-attenuated response (IDT @ anti-node). In addition, we demonstrated resonators with frequencies ranging from 400MHz to 800MHz on a single chip.