{"title":"A Combinatorial Approach for Exposing Off-Nominal Behaviors","authors":"Kaushik Madala, Hyunsook Do, Daniel Aceituna","doi":"10.1145/3180155.3180204","DOIUrl":null,"url":null,"abstract":"Off-nominal behaviors (ONBs) have been a major concern in the areas of embedded systems and safety-critical systems. To address ONB problems, some researchers have proposed model-based approaches that can expose ONBs by analyzing natural language requirements documents. While these approaches produced promising results, they require a lot of human effort and time. In this paper, to reduce human effort and time, we propose a combinatorial–based approach, Combinatorial Causal Component Model (Combi-CCM), which uses structured requirements patterns and combinations generated using the IPOG algorithm. We conducted an empirical study using several requirements documents to evaluate our approach, and our results indicate that the proposed approach can reduce human effort and time while maintaining the same ONB exposure ability obtained by the control techniques.","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"15 1","pages":"910-920"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3180204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Off-nominal behaviors (ONBs) have been a major concern in the areas of embedded systems and safety-critical systems. To address ONB problems, some researchers have proposed model-based approaches that can expose ONBs by analyzing natural language requirements documents. While these approaches produced promising results, they require a lot of human effort and time. In this paper, to reduce human effort and time, we propose a combinatorial–based approach, Combinatorial Causal Component Model (Combi-CCM), which uses structured requirements patterns and combinations generated using the IPOG algorithm. We conducted an empirical study using several requirements documents to evaluate our approach, and our results indicate that the proposed approach can reduce human effort and time while maintaining the same ONB exposure ability obtained by the control techniques.