From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap Mobile GUI Implementation

Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, Yang Liu
{"title":"From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap Mobile GUI Implementation","authors":"Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, Yang Liu","doi":"10.1145/3180155.3180240","DOIUrl":null,"url":null,"abstract":"A GUI skeleton is the starting point for implementing a UI design image. To obtain a GUI skeleton from a UI design image, developers have to visually understand UI elements and their spatial layout in the image, and then translate this understanding into proper GUI components and their compositions. Automating this visual understanding and translation would be beneficial for bootstraping mobile GUI implementation, but it is a challenging task due to the diversity of UI designs and the complexity of GUI skeletons to generate. Existing tools are rigid as they depend on heuristically-designed visual understanding and GUI generation rules. In this paper, we present a neural machine translator that combines recent advances in computer vision and machine translation for translating a UI design image into a GUI skeleton. Our translator learns to extract visual features in UI images, encode these features' spatial layouts, and generate GUI skeletons in a unified neural network framework, without requiring manual rule development. For training our translator, we develop an automated GUI exploration method to automatically collect large-scale UI data from real-world applications. We carry out extensive experiments to evaluate the accuracy, generality and usefulness of our approach.","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"92 1","pages":"665-676"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"165","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3180240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 165

Abstract

A GUI skeleton is the starting point for implementing a UI design image. To obtain a GUI skeleton from a UI design image, developers have to visually understand UI elements and their spatial layout in the image, and then translate this understanding into proper GUI components and their compositions. Automating this visual understanding and translation would be beneficial for bootstraping mobile GUI implementation, but it is a challenging task due to the diversity of UI designs and the complexity of GUI skeletons to generate. Existing tools are rigid as they depend on heuristically-designed visual understanding and GUI generation rules. In this paper, we present a neural machine translator that combines recent advances in computer vision and machine translation for translating a UI design image into a GUI skeleton. Our translator learns to extract visual features in UI images, encode these features' spatial layouts, and generate GUI skeletons in a unified neural network framework, without requiring manual rule development. For training our translator, we develop an automated GUI exploration method to automatically collect large-scale UI data from real-world applications. We carry out extensive experiments to evaluate the accuracy, generality and usefulness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从UI设计图像到GUI骨架:一个神经机器翻译引导移动GUI实现
GUI框架是实现UI设计映像的起点。为了从UI设计图像中获得GUI框架,开发人员必须从视觉上理解UI元素及其在图像中的空间布局,然后将这种理解转化为适当的GUI组件及其组成。自动化这种视觉理解和翻译将有利于引导移动GUI实现,但由于UI设计的多样性和生成GUI框架的复杂性,这是一项具有挑战性的任务。现有的工具是刚性的,因为它们依赖于启发式设计的视觉理解和GUI生成规则。在本文中,我们提出了一个神经机器翻译器,它结合了计算机视觉和机器翻译的最新进展,用于将UI设计图像翻译成GUI骨架。我们的翻译器学习提取UI图像中的视觉特征,对这些特征的空间布局进行编码,并在统一的神经网络框架中生成GUI骨架,而无需手动开发规则。为了训练我们的翻译人员,我们开发了一种自动GUI探索方法,从实际应用程序中自动收集大规模UI数据。我们进行了大量的实验来评估我们的方法的准确性、通用性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Launch-Mode-Aware Context-Sensitive Activity Transition Analysis A Combinatorial Approach for Exposing Off-Nominal Behaviors Perses: Syntax-Guided Program Reduction Fine-Grained Test Minimization From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap Mobile GUI Implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1