M. Coig, F. Milési, N. Payen, S. Reboh, F. Mazen, A. Lanterne, J. Le Perchec, S. Gall, Y. Veschetti
{"title":"Solar cells doping by beam line and plasma immersion ion implantation","authors":"M. Coig, F. Milési, N. Payen, S. Reboh, F. Mazen, A. Lanterne, J. Le Perchec, S. Gall, Y. Veschetti","doi":"10.1109/IIT.2014.6939976","DOIUrl":null,"url":null,"abstract":"The doping of n-type silicon solar cells was investigated using two ion implantation techniques: beam line and plasma immersion. Initially we studied the effects of beam line ion implantation, where the dopants were activated by two different annealing routines. The first one used a single annealing to activate both B implanted emitter and P implanted back surface field (BSF), while the second one used two different annealing to separately activate the dopants. Good yield was reached with a record cell of 20.33% efficiency. Secondly, we investigated the doping by plasma immersion ion implantation with final objective of fabricate a solar cell fully doped by plasma.","PeriodicalId":6548,"journal":{"name":"2014 20th International Conference on Ion Implantation Technology (IIT)","volume":"101 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th International Conference on Ion Implantation Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2014.6939976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The doping of n-type silicon solar cells was investigated using two ion implantation techniques: beam line and plasma immersion. Initially we studied the effects of beam line ion implantation, where the dopants were activated by two different annealing routines. The first one used a single annealing to activate both B implanted emitter and P implanted back surface field (BSF), while the second one used two different annealing to separately activate the dopants. Good yield was reached with a record cell of 20.33% efficiency. Secondly, we investigated the doping by plasma immersion ion implantation with final objective of fabricate a solar cell fully doped by plasma.