Can You Give Me a Reason?: Argument-inducing Online Forum by Argument Mining

Makiko Ida, Gaku Morio, Kosui Iwasa, Tomoyuki Tatsumi, Takaki Yasui, K. Fujita
{"title":"Can You Give Me a Reason?: Argument-inducing Online Forum by Argument Mining","authors":"Makiko Ida, Gaku Morio, Kosui Iwasa, Tomoyuki Tatsumi, Takaki Yasui, K. Fujita","doi":"10.1145/3308558.3314127","DOIUrl":null,"url":null,"abstract":"This demonstration paper presents an argument-inducing online forum that stimulates participants with lack of premises for their claim in online discussions. The proposed forum provides its participants the following two subsystems: (1) Argument estimator for online discussions automatically generates a visualization of the argument structures in posts based on argument mining. The forum indicates structures such as claim-premise relations in real time by exploiting a state-of-the-art deep learning model. (2) Argument-inducing agent for online discussion (AIAD) automatically generates a reply post based on the argument estimator requesting further reasons to improve the argumentation of participants. Our experimental discussion demonstrates that the argument estimator can detect the argument structures from online discussions, and AIAD can induce premises from the participants. To the best of our knowledge, our argument-inducing online forum is the first approach to either visualize or request a real-time argument for online discussions. Our forum can be used to collect and induce claim-reasons pairs rather than only opinions to understand various lines of reasoning in online arguments such as civic discussions, online debates, and education objectives. The argument estimator code is available at https://github.com/EdoFrank/EMNLP2018-ArgMining-Morio and the demonstration video is available at https://youtu.be/T9fNJfneQV8.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"154 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3314127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This demonstration paper presents an argument-inducing online forum that stimulates participants with lack of premises for their claim in online discussions. The proposed forum provides its participants the following two subsystems: (1) Argument estimator for online discussions automatically generates a visualization of the argument structures in posts based on argument mining. The forum indicates structures such as claim-premise relations in real time by exploiting a state-of-the-art deep learning model. (2) Argument-inducing agent for online discussion (AIAD) automatically generates a reply post based on the argument estimator requesting further reasons to improve the argumentation of participants. Our experimental discussion demonstrates that the argument estimator can detect the argument structures from online discussions, and AIAD can induce premises from the participants. To the best of our knowledge, our argument-inducing online forum is the first approach to either visualize or request a real-time argument for online discussions. Our forum can be used to collect and induce claim-reasons pairs rather than only opinions to understand various lines of reasoning in online arguments such as civic discussions, online debates, and education objectives. The argument estimator code is available at https://github.com/EdoFrank/EMNLP2018-ArgMining-Morio and the demonstration video is available at https://youtu.be/T9fNJfneQV8.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
你能给我一个理由吗?:基于论据挖掘的诱导论点的在线论坛
这篇演示论文提出了一个引起争论的在线论坛,刺激参与者在网上讨论中缺乏他们的主张的前提。该论坛为参与者提供了以下两个子系统:(1)在线讨论的论据估计器基于论据挖掘自动生成帖子中论据结构的可视化。该论坛通过利用最先进的深度学习模型实时显示索赔-前提关系等结构。(2) AIAD (argument -inducing agent for online discussion)基于论据估计器自动生成回复帖子,请求进一步的理由来改进参与者的论据。我们的实验讨论表明,论点估计器可以从在线讨论中检测论点结构,AIAD可以从参与者那里归纳出前提。据我们所知,我们的辩论诱导在线论坛是第一个将在线讨论可视化或要求实时辩论的方法。我们的论坛可以用来收集和归纳主张-理由对,而不仅仅是观点,以理解公民讨论、在线辩论和教育目标等在线争论中的各种推理路线。参数估计器代码可在https://github.com/EdoFrank/EMNLP2018-ArgMining-Morio上获得,演示视频可在https://youtu.be/T9fNJfneQV8上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1