Murtada A. Elhaj, O. Abdullatif, A. Abdulraheem, Amjed Hassan, A. Sultan
{"title":"Acoustic Properties of Carbonate: An Experimental and Modelling Study","authors":"Murtada A. Elhaj, O. Abdullatif, A. Abdulraheem, Amjed Hassan, A. Sultan","doi":"10.2118/194753-MS","DOIUrl":null,"url":null,"abstract":"\n The science of Acoustics deals with the propagation of mechanical waves in the three phases of materials, solids, liquids, and gases. In exploration and reservoir engineering, acoustic wave velocities play an essential role in reservoir description. The primary challenge in the initial evaluation and characterization of reservoirs is related to the understanding of its geology, petrophysics, and geomechanics. Therefore, an accurate estimation of acoustic wave velocities and rock porosity is essential for better reservoir description and performance as well as a better forecast of seismic properties. In this reseach, the primary objective is to analyze the texture, mineralogy, porosity and permeability data of outcrop carbonate rock samples to study the impact of confining pressure on wave velocities. Furthermore, an empirical correlation is proposed for relating porosity with acoustic properties.\n Ninety outcrops samples are collected from Dam Formation in Al-Lidam area in Eastern Province, Saudi Arabia to develop a correlation. The carbonate samples varies from mudstone to grainstone facies. The samples are collected, prepared, and tested for this experimental study based on API standards. Compressional and shear wave velocities of carbonate rocks are measured under dry and fully brine-saturated conditions for 5 to 25 MPa effective confining pressures at room temperature. Moreover, porosity and permeability are measured using three different techniques, viz., AP-608 Automated Porosimeter-Permeameter, Helium Porosimeter, and thin section technique. Finally, the results are compared with those from other studies related to the same area.\n A state-of-the-art review is presented on seismic properties, relationship with porosity and acoustics in addition to the current trend and the future challenges in the area. The laboratory investigations for this study reveals that Al-Lidam area has different types of facies. The results also show that both compressional and shear wave velocities increase as the confining pressure on the dry samples increase. However, the compressional wave velocities increased and the shear wave velocities decreased with confining pressure under fully saturated conditions. A new correlation is presented for carbonate rocks to predict porosity from acoustic wave velocities.\n This study will help in improving the exploration efforts as well as give a better explanation for reservoir characterization, facies recognition, geophysical interpretation, and engineering calculations. This attempt will open a new research area for engineers and scientists to study the effect of variation in different properties on wave velocities.","PeriodicalId":10908,"journal":{"name":"Day 2 Tue, March 19, 2019","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, March 19, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194753-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The science of Acoustics deals with the propagation of mechanical waves in the three phases of materials, solids, liquids, and gases. In exploration and reservoir engineering, acoustic wave velocities play an essential role in reservoir description. The primary challenge in the initial evaluation and characterization of reservoirs is related to the understanding of its geology, petrophysics, and geomechanics. Therefore, an accurate estimation of acoustic wave velocities and rock porosity is essential for better reservoir description and performance as well as a better forecast of seismic properties. In this reseach, the primary objective is to analyze the texture, mineralogy, porosity and permeability data of outcrop carbonate rock samples to study the impact of confining pressure on wave velocities. Furthermore, an empirical correlation is proposed for relating porosity with acoustic properties.
Ninety outcrops samples are collected from Dam Formation in Al-Lidam area in Eastern Province, Saudi Arabia to develop a correlation. The carbonate samples varies from mudstone to grainstone facies. The samples are collected, prepared, and tested for this experimental study based on API standards. Compressional and shear wave velocities of carbonate rocks are measured under dry and fully brine-saturated conditions for 5 to 25 MPa effective confining pressures at room temperature. Moreover, porosity and permeability are measured using three different techniques, viz., AP-608 Automated Porosimeter-Permeameter, Helium Porosimeter, and thin section technique. Finally, the results are compared with those from other studies related to the same area.
A state-of-the-art review is presented on seismic properties, relationship with porosity and acoustics in addition to the current trend and the future challenges in the area. The laboratory investigations for this study reveals that Al-Lidam area has different types of facies. The results also show that both compressional and shear wave velocities increase as the confining pressure on the dry samples increase. However, the compressional wave velocities increased and the shear wave velocities decreased with confining pressure under fully saturated conditions. A new correlation is presented for carbonate rocks to predict porosity from acoustic wave velocities.
This study will help in improving the exploration efforts as well as give a better explanation for reservoir characterization, facies recognition, geophysical interpretation, and engineering calculations. This attempt will open a new research area for engineers and scientists to study the effect of variation in different properties on wave velocities.