Modelling of Methanol Synthesis

Q3 Chemical Engineering Chemical engineering transactions Pub Date : 2021-11-15 DOI:10.3303/CET2188155
M. Bampaou, A. Kyriakides, S. Voutetakis, Panagiotis Seferlis, K. Panopoulos
{"title":"Modelling of Methanol Synthesis","authors":"M. Bampaou, A. Kyriakides, S. Voutetakis, Panagiotis Seferlis, K. Panopoulos","doi":"10.3303/CET2188155","DOIUrl":null,"url":null,"abstract":"Hydrogen is a key component in the methanol (MeOH) synthesis process. It affects both the environmental and economic performance, since renewable hydrogen (usually produced by electrolysis) is the most expensive component of the process. The addition of renewable hydrogen improves the carbon balance of the process but necessitates the planning of a suitable strategy to account for the stochastic nature of renewable energy and the respective costs. For this reason, the focus of this work is the efficient hydrogen utilization in contrast to most of the past literature works that mainly focus on the conversion of the carbonaceous feedstock. Several operating parameters such as the extent of recycling, operating temperature and pressure, stoichiometric number, inlet temperature and total mass flow per tube affect the methanol yield, carbon conversion and hydrogen consumption of the process. The scope of this work is to provide insight on the effect of those parameters on the efficient hydrogen utilisation using a methanol synthesis modelling tool. The findings of this study showed that hydrogen utilisation could be considerably improved if operating at certain conditions. Lower stoichiometric numbers and mass flows per tube, inlet and cooling temperatures up to 510 K and higher operating pressures could reduce the required hydrogen per produced methanol unit. Especially the employment of recycling, could lead to substantial reduction of the associated hydrogen requirements. In particular, recycling 50 % of the residual off-gases could lead to 10 % less fresh hydrogen requirements and 90 % recycling results to 40 % less hydrogen for the production of the same amount of methanol.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"19 1","pages":"931-936"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2188155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen is a key component in the methanol (MeOH) synthesis process. It affects both the environmental and economic performance, since renewable hydrogen (usually produced by electrolysis) is the most expensive component of the process. The addition of renewable hydrogen improves the carbon balance of the process but necessitates the planning of a suitable strategy to account for the stochastic nature of renewable energy and the respective costs. For this reason, the focus of this work is the efficient hydrogen utilization in contrast to most of the past literature works that mainly focus on the conversion of the carbonaceous feedstock. Several operating parameters such as the extent of recycling, operating temperature and pressure, stoichiometric number, inlet temperature and total mass flow per tube affect the methanol yield, carbon conversion and hydrogen consumption of the process. The scope of this work is to provide insight on the effect of those parameters on the efficient hydrogen utilisation using a methanol synthesis modelling tool. The findings of this study showed that hydrogen utilisation could be considerably improved if operating at certain conditions. Lower stoichiometric numbers and mass flows per tube, inlet and cooling temperatures up to 510 K and higher operating pressures could reduce the required hydrogen per produced methanol unit. Especially the employment of recycling, could lead to substantial reduction of the associated hydrogen requirements. In particular, recycling 50 % of the residual off-gases could lead to 10 % less fresh hydrogen requirements and 90 % recycling results to 40 % less hydrogen for the production of the same amount of methanol.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲醇合成建模
氢是甲醇(MeOH)合成过程中的关键成分。它影响环境和经济性能,因为可再生氢(通常由电解产生)是该过程中最昂贵的组成部分。可再生氢的加入改善了该过程的碳平衡,但需要制定合适的策略来考虑可再生能源的随机性和相应的成本。因此,与以往大多数文献主要关注碳质原料的转化相比,本研究的重点是氢的高效利用。几个操作参数,如循环程度、操作温度和压力、化学计量数、入口温度和每管总质量流量影响甲醇收率、碳转化率和氢气消耗。这项工作的范围是使用甲醇合成建模工具提供对这些参数对有效氢利用的影响的见解。这项研究的结果表明,如果在某些条件下运行,氢的利用率可以大大提高。降低每管的化学计量数和质量流量,进口和冷却温度高达510 K,以及更高的操作压力,可以减少每生产甲醇装置所需的氢气。特别是采用回收利用,可以大大减少相关的氢需求。特别是,回收50%的残余废气可以减少10%的新鲜氢气需求,90%的回收结果可以减少40%的氢气用于生产相同数量的甲醇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical engineering transactions
Chemical engineering transactions Chemical Engineering-Chemical Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊介绍: Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering
期刊最新文献
Incorporation of a Filter Media by Cellulose Fibers in Biosafety from Sugarcane Bagasse by Alkaline Hydrolysis Air Deterioration Gases in the Social Confinement Period by COVID-19 in Bogotá, Quito, Lima, Santiago de Chile and Buenos Aires Modelling of Methanol Synthesis The Potential of Liquefied Oxygen Storage for Flexible Oxygen-Pressure Swing Adsorption Unit Optimal Operational Profiles in an Electrodialysis Unit for Ion Recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1