M. Bampaou, A. Kyriakides, S. Voutetakis, Panagiotis Seferlis, K. Panopoulos
{"title":"Modelling of Methanol Synthesis","authors":"M. Bampaou, A. Kyriakides, S. Voutetakis, Panagiotis Seferlis, K. Panopoulos","doi":"10.3303/CET2188155","DOIUrl":null,"url":null,"abstract":"Hydrogen is a key component in the methanol (MeOH) synthesis process. It affects both the environmental and economic performance, since renewable hydrogen (usually produced by electrolysis) is the most expensive component of the process. The addition of renewable hydrogen improves the carbon balance of the process but necessitates the planning of a suitable strategy to account for the stochastic nature of renewable energy and the respective costs. For this reason, the focus of this work is the efficient hydrogen utilization in contrast to most of the past literature works that mainly focus on the conversion of the carbonaceous feedstock. Several operating parameters such as the extent of recycling, operating temperature and pressure, stoichiometric number, inlet temperature and total mass flow per tube affect the methanol yield, carbon conversion and hydrogen consumption of the process. The scope of this work is to provide insight on the effect of those parameters on the efficient hydrogen utilisation using a methanol synthesis modelling tool. The findings of this study showed that hydrogen utilisation could be considerably improved if operating at certain conditions. Lower stoichiometric numbers and mass flows per tube, inlet and cooling temperatures up to 510 K and higher operating pressures could reduce the required hydrogen per produced methanol unit. Especially the employment of recycling, could lead to substantial reduction of the associated hydrogen requirements. In particular, recycling 50 % of the residual off-gases could lead to 10 % less fresh hydrogen requirements and 90 % recycling results to 40 % less hydrogen for the production of the same amount of methanol.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"19 1","pages":"931-936"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2188155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen is a key component in the methanol (MeOH) synthesis process. It affects both the environmental and economic performance, since renewable hydrogen (usually produced by electrolysis) is the most expensive component of the process. The addition of renewable hydrogen improves the carbon balance of the process but necessitates the planning of a suitable strategy to account for the stochastic nature of renewable energy and the respective costs. For this reason, the focus of this work is the efficient hydrogen utilization in contrast to most of the past literature works that mainly focus on the conversion of the carbonaceous feedstock. Several operating parameters such as the extent of recycling, operating temperature and pressure, stoichiometric number, inlet temperature and total mass flow per tube affect the methanol yield, carbon conversion and hydrogen consumption of the process. The scope of this work is to provide insight on the effect of those parameters on the efficient hydrogen utilisation using a methanol synthesis modelling tool. The findings of this study showed that hydrogen utilisation could be considerably improved if operating at certain conditions. Lower stoichiometric numbers and mass flows per tube, inlet and cooling temperatures up to 510 K and higher operating pressures could reduce the required hydrogen per produced methanol unit. Especially the employment of recycling, could lead to substantial reduction of the associated hydrogen requirements. In particular, recycling 50 % of the residual off-gases could lead to 10 % less fresh hydrogen requirements and 90 % recycling results to 40 % less hydrogen for the production of the same amount of methanol.
期刊介绍:
Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering