Optimal Operational Profiles in an Electrodialysis Unit for Ion Recovery

Q3 Chemical Engineering Chemical engineering transactions Pub Date : 2021-11-15 DOI:10.3303/CET2188170
Athanasios Latinis, Panagiotis Seferlis, A. Papadopoulos
{"title":"Optimal Operational Profiles in an Electrodialysis Unit for Ion Recovery","authors":"Athanasios Latinis, Panagiotis Seferlis, A. Papadopoulos","doi":"10.3303/CET2188170","DOIUrl":null,"url":null,"abstract":"Electrodialysis is an efficient process for the cleaning of industrial water effluent streams from toxic ionic substances with the simultaneous recovery of valuable ions for reuse. Energy consumption and waste recovery are the two key goals of the process. A dynamic optimisation program aims to determine the optimal operating conditions in terms of applied voltage and effluent flow rate in a batch operating scheme. A model is developed that accounts for the ion transfer through the ion selective membranes and the dynamics of the system. A combination of three objective functions targeting the minimisation of the overall batch process time, the minimisation of the electrical energy consumption required for the ion transfer, and the maximisation of the overall degree of separation is investigated. The manipulated variables applied voltage and feed stream flow rate are considered as piecewise constant during each time interval, spanning the duration of the entire batch. The dynamic optimisation problem is solved through standard non-linear programming techniques which calculate the optimal batch duration and condition profiles for the system. A multi-objective analysis is presented for various combinations of weight values for the joint objective function through the development of the Pareto optimal front. The current approach has been implemented in the removal and recovery of sulfuric anions from an aqueous solution and resulted in the achievement of a high degree of separation in a shorter period at a much lower energy consumption.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"159 1","pages":"1021-1026"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2188170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Electrodialysis is an efficient process for the cleaning of industrial water effluent streams from toxic ionic substances with the simultaneous recovery of valuable ions for reuse. Energy consumption and waste recovery are the two key goals of the process. A dynamic optimisation program aims to determine the optimal operating conditions in terms of applied voltage and effluent flow rate in a batch operating scheme. A model is developed that accounts for the ion transfer through the ion selective membranes and the dynamics of the system. A combination of three objective functions targeting the minimisation of the overall batch process time, the minimisation of the electrical energy consumption required for the ion transfer, and the maximisation of the overall degree of separation is investigated. The manipulated variables applied voltage and feed stream flow rate are considered as piecewise constant during each time interval, spanning the duration of the entire batch. The dynamic optimisation problem is solved through standard non-linear programming techniques which calculate the optimal batch duration and condition profiles for the system. A multi-objective analysis is presented for various combinations of weight values for the joint objective function through the development of the Pareto optimal front. The current approach has been implemented in the removal and recovery of sulfuric anions from an aqueous solution and resulted in the achievement of a high degree of separation in a shorter period at a much lower energy consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子回收电渗析装置的最佳操作概况
电渗析是一种清洁工业废水中有毒离子物质的有效方法,同时回收有价值的离子进行再利用。能源消耗和废物回收是该过程的两个关键目标。动态优化程序旨在确定批处理操作方案中应用电压和流出流量方面的最佳操作条件。建立了离子通过离子选择膜和系统动力学的模型。研究了三个目标函数的组合,目标是最小化整个批处理时间,最小化离子转移所需的电能消耗,以及最大化整体分离程度。被操纵的变量施加电压和进料流流量被认为是分段常数在每个时间间隔,跨越整个批次的持续时间。动态优化问题是通过标准的非线性规划技术来解决的,该技术计算出系统的最优批处理时间和状态曲线。通过发展帕累托最优前沿,对联合目标函数的权重值的各种组合进行了多目标分析。目前的方法已用于从水溶液中去除和回收硫阴离子,并在较短的时间内以较低的能耗实现了高度分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical engineering transactions
Chemical engineering transactions Chemical Engineering-Chemical Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊介绍: Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering
期刊最新文献
Incorporation of a Filter Media by Cellulose Fibers in Biosafety from Sugarcane Bagasse by Alkaline Hydrolysis Air Deterioration Gases in the Social Confinement Period by COVID-19 in Bogotá, Quito, Lima, Santiago de Chile and Buenos Aires Modelling of Methanol Synthesis The Potential of Liquefied Oxygen Storage for Flexible Oxygen-Pressure Swing Adsorption Unit Optimal Operational Profiles in an Electrodialysis Unit for Ion Recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1