Modeling studies for adsorption of phenol and co-pollutants onto granular activated carbon prepared from olive oil industrial waste

G. Sharaf, E. Abdel-Galil, Yasser El-eryan
{"title":"Modeling studies for adsorption of phenol and co-pollutants onto granular activated carbon prepared from olive oil industrial waste","authors":"G. Sharaf, E. Abdel-Galil, Yasser El-eryan","doi":"10.22104/AET.2018.2226.1112","DOIUrl":null,"url":null,"abstract":"Granular activated carbon (OSAC) which was derived from olive oil industrial solid waste was chemically activated with different concentrations of phosphoric acid. OSAC-materials were evaluated for their ability to remove phenol from aqueous solution in a batch technique. Adsorption isotherms were determined and modeled with five linear Langmuir forms, namely the Freundlich, Elovich, Temkin, Kiselev and Hill-de Boer models. The experimental data for the adsorption of phenol onto OSAM-materials were fitted well with the Langmuir-1 and 2, Freundlich, Kiselev and Hill-de Boer models. Adsorption was carried out on energetically different sites as localized monolayer adsorption and was an exothermic process. The uptake of phenol onto OSAC increased in the following order: OSAC-80%> OSAC-70%> OSAC-60%; the maximum adsorption capacities of phenol were found to be 114.416, 125.628 and 262.467 mg/g onto OSAC-60%, OSAC-70% and OSAC-80%, respectively. On the other hand, OSAC-80% was used as a good adsorbent for the removal of phenol and Cd2+ as co-pollutants from waste aqueous solutions. 80.25% of phenol and 50.66% of Cd2+ can be simultaneously removed by OSAC-80%.","PeriodicalId":7295,"journal":{"name":"Advances in environmental science and technology","volume":"23 1","pages":"23-40"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in environmental science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22104/AET.2018.2226.1112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Granular activated carbon (OSAC) which was derived from olive oil industrial solid waste was chemically activated with different concentrations of phosphoric acid. OSAC-materials were evaluated for their ability to remove phenol from aqueous solution in a batch technique. Adsorption isotherms were determined and modeled with five linear Langmuir forms, namely the Freundlich, Elovich, Temkin, Kiselev and Hill-de Boer models. The experimental data for the adsorption of phenol onto OSAM-materials were fitted well with the Langmuir-1 and 2, Freundlich, Kiselev and Hill-de Boer models. Adsorption was carried out on energetically different sites as localized monolayer adsorption and was an exothermic process. The uptake of phenol onto OSAC increased in the following order: OSAC-80%> OSAC-70%> OSAC-60%; the maximum adsorption capacities of phenol were found to be 114.416, 125.628 and 262.467 mg/g onto OSAC-60%, OSAC-70% and OSAC-80%, respectively. On the other hand, OSAC-80% was used as a good adsorbent for the removal of phenol and Cd2+ as co-pollutants from waste aqueous solutions. 80.25% of phenol and 50.66% of Cd2+ can be simultaneously removed by OSAC-80%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
橄榄油工业废渣制备的颗粒活性炭吸附苯酚和共污染物的模拟研究
以橄榄油工业固体废弃物为原料,采用不同浓度的磷酸对颗粒活性炭进行了化学活化。用批处理技术对osac -材料去除水溶液中苯酚的能力进行了评价。采用Freundlich、Elovich、Temkin、Kiselev和Hill-de Boer五种线性Langmuir模型确定了吸附等温线并建立了模型。实验数据与Langmuir-1和2、Freundlich、Kiselev和Hill-de Boer模型吻合较好。吸附以局部单层吸附的方式在能量不同的位置进行,为放热过程。苯酚在OSAC上的吸收量依次为:OSAC-80%> OSAC-70%> OSAC-60%;苯酚在OSAC-60%、OSAC-70%和OSAC-80%上的最大吸附量分别为114.416、125.628和262.467 mg/g。另一方面,OSAC-80%作为一种良好的吸附剂用于去除废水中的共污染物苯酚和Cd2+。OSAC-80%可同时去除80.25%的苯酚和50.66%的Cd2+。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical analysis of tropospheric ozone and its precursors using principal component analysis in an urban area of Surat, India The effects of different materials of green roofing on the quantity and quality of stored and drainage water by using simulated rainfall setup The CO2 removal of flue gas using hollow fiber membrane contactor: a comprehensive modeling and new perspectives Social Cost of CO2 emissions in Tehran Waste Management Scenarios and select the scenario based on least impact on Global Warming by using Life Cycle Assessment Surface Ignition Using Ethanol on Mo and Al2O3-TiO2 Coated in CI Engine for Environmental Benefits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1