The effects of different materials of green roofing on the quantity and quality of stored and drainage water by using simulated rainfall setup

Hasti Nazemi, F. Misaghi, Ali Ghahramanzadeh
{"title":"The effects of different materials of green roofing on the quantity and quality of stored and drainage water by using simulated rainfall setup","authors":"Hasti Nazemi, F. Misaghi, Ali Ghahramanzadeh","doi":"10.22104/AET.2021.4662.1271","DOIUrl":null,"url":null,"abstract":"One of the methods to control the rain on the spot and reuse it is the green roof. This method uses a multi-layer system of vegetation on the roof and balcony of a building to absorb part of the rainwater; the volume and peak runoff are also reduced by evaporation, transpiration, and treatment processes. This research was conducted as a field experiment in the hydraulic laboratory of the Agriculture Faculty in the University of Zanjan, Iran. The factors of the study design included a green roof covered with shards of brick and cultivated soil (grass). The experiments were performed at rainfall intensities of 45, 55, and 65 mm/h with 5, 10, and 25 year return periods, respectively. Also, the volume of the water stored and drainage was measured in different conditions. The results of this study showed that regardless of the type of materials used in the green roof, with increasing time, the amount of water stored in the green roof decreased, and the amount of drained water increased. A comparison of the average performance of the brick and grass modifiers for green roofs showed that the volume of the stored water in the grass corrector was higher; if the shards of bricks were used, 69% of the rainfall would be stored, and 31% was drained. However, adding grass to the green roof increased the volume of stored water to 78% and reduced the volume of drainage water to 22%. Also, the presence of grass on the green roof reduced the electrical conductivity by 32% compared to the single brick.","PeriodicalId":7295,"journal":{"name":"Advances in environmental science and technology","volume":"223 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in environmental science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22104/AET.2021.4662.1271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the methods to control the rain on the spot and reuse it is the green roof. This method uses a multi-layer system of vegetation on the roof and balcony of a building to absorb part of the rainwater; the volume and peak runoff are also reduced by evaporation, transpiration, and treatment processes. This research was conducted as a field experiment in the hydraulic laboratory of the Agriculture Faculty in the University of Zanjan, Iran. The factors of the study design included a green roof covered with shards of brick and cultivated soil (grass). The experiments were performed at rainfall intensities of 45, 55, and 65 mm/h with 5, 10, and 25 year return periods, respectively. Also, the volume of the water stored and drainage was measured in different conditions. The results of this study showed that regardless of the type of materials used in the green roof, with increasing time, the amount of water stored in the green roof decreased, and the amount of drained water increased. A comparison of the average performance of the brick and grass modifiers for green roofs showed that the volume of the stored water in the grass corrector was higher; if the shards of bricks were used, 69% of the rainfall would be stored, and 31% was drained. However, adding grass to the green roof increased the volume of stored water to 78% and reduced the volume of drainage water to 22%. Also, the presence of grass on the green roof reduced the electrical conductivity by 32% compared to the single brick.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用模拟降雨装置,研究了不同材料的绿色屋面对储水量和排水量的影响
在现场控制雨水并重新利用雨水的方法之一是绿色屋顶。这种方法利用建筑屋顶和阳台上的多层植被系统来吸收部分雨水;体积和峰值径流也通过蒸发、蒸腾和处理过程减少。这项研究是在伊朗赞詹大学农学院水力学实验室进行的实地试验。研究设计的因素包括覆盖着砖块碎片和耕地土壤(草)的绿色屋顶。试验分别在降雨强度为45、55和65 mm/h、5年、10年和25年的条件下进行。测定了不同条件下的储水量和排水量。本研究结果表明,无论绿色屋顶使用何种材料,随着时间的增加,绿色屋顶的储水量减少,排水量增加。对比了砖和草改性剂的平均性能,发现草改性剂的蓄水量更高;如果使用砖块碎片,69%的降雨将被储存,31%被排干。然而,在绿色屋顶上添加草使储水量增加到78%,排水水量减少到22%。此外,与单一砖块相比,绿色屋顶上的草减少了32%的导电性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical analysis of tropospheric ozone and its precursors using principal component analysis in an urban area of Surat, India The effects of different materials of green roofing on the quantity and quality of stored and drainage water by using simulated rainfall setup The CO2 removal of flue gas using hollow fiber membrane contactor: a comprehensive modeling and new perspectives Social Cost of CO2 emissions in Tehran Waste Management Scenarios and select the scenario based on least impact on Global Warming by using Life Cycle Assessment Surface Ignition Using Ethanol on Mo and Al2O3-TiO2 Coated in CI Engine for Environmental Benefits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1