{"title":"NBTI aging evaluation of PUF-based differential architectures","authors":"Mohd Syafiq Mispan, Basel Halak, Mark Zwolinski","doi":"10.1109/IOLTS.2016.7604680","DOIUrl":null,"url":null,"abstract":"Silicon Physical Unclonable Functions (PUFs) have emerged as novel cryptographic primitives, with the ability to generate unique chip identifiers and cryptographic keys by exploiting intrinsic manufacturing process variations. The “Two Choose One” PUF (TCO-PUF) has recently been proposed. It is based on a differential architecture and exploits the non-linear relationship between current and voltage in the subthreshold operating region. As CMOS technology scales down, aging-induced Negative Bias Temperature Instability (NBTI) is becoming more pronounced, resulting in reliability issues for the PUF response. Differential design techniques can be useful for mitigating and canceling out first-order environmental dependencies such as aging, temperature and supply voltage. In this study, we investigate the robustness of PUFs with differential architectures, such as TCO-PUF and Arbiter-PUF, under the influence of NBTI. Our results indicate PUFs with differential architectures are less vulnerable to aging-related degradation compared to other PUF designs such as RO-PUF and SRAM-PUF. We show that the reliability of TCO-PUF and Arbiter-PUF only degrades by about 4.5% and 2.41%, respectively, after 10 years, while RO-PUFs and SRAM-PUFs degrade by about 12.76% in 10 years and 7% in 4.5 years, respectively.","PeriodicalId":6580,"journal":{"name":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"45 1","pages":"103-108"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2016.7604680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Silicon Physical Unclonable Functions (PUFs) have emerged as novel cryptographic primitives, with the ability to generate unique chip identifiers and cryptographic keys by exploiting intrinsic manufacturing process variations. The “Two Choose One” PUF (TCO-PUF) has recently been proposed. It is based on a differential architecture and exploits the non-linear relationship between current and voltage in the subthreshold operating region. As CMOS technology scales down, aging-induced Negative Bias Temperature Instability (NBTI) is becoming more pronounced, resulting in reliability issues for the PUF response. Differential design techniques can be useful for mitigating and canceling out first-order environmental dependencies such as aging, temperature and supply voltage. In this study, we investigate the robustness of PUFs with differential architectures, such as TCO-PUF and Arbiter-PUF, under the influence of NBTI. Our results indicate PUFs with differential architectures are less vulnerable to aging-related degradation compared to other PUF designs such as RO-PUF and SRAM-PUF. We show that the reliability of TCO-PUF and Arbiter-PUF only degrades by about 4.5% and 2.41%, respectively, after 10 years, while RO-PUFs and SRAM-PUFs degrade by about 12.76% in 10 years and 7% in 4.5 years, respectively.