{"title":"Biomedical text categorization with concept graph representations using a controlled vocabulary","authors":"Meenakshi Mishra, Jun Huan, S. Bleik, Min Song","doi":"10.1145/2350176.2350181","DOIUrl":null,"url":null,"abstract":"Recent work using graph representations for text categorization has shown promising performance over conventional bag-of-words representation of text documents. In this paper we investigate a graph representation of texts for the task of text categorization. In our representation we identify high level concepts extracted from a database of controlled biomedical terms and build a rich graph structure that contains important concepts and relationships. This procedure ensures that graphs are described with a regular vocabulary, leading to increased ease of comparison. We then classify document graphs by applying a set-based graph kernel that is intuitively sensible and able to deal with the disconnectedness of the constructed concept graphs. We compare this approach to standard approaches using non-graph, text-based features. We also do a comparison amongst different kernels that can be used to see which performs better.","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"43 1","pages":"26-32"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2350176.2350181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Recent work using graph representations for text categorization has shown promising performance over conventional bag-of-words representation of text documents. In this paper we investigate a graph representation of texts for the task of text categorization. In our representation we identify high level concepts extracted from a database of controlled biomedical terms and build a rich graph structure that contains important concepts and relationships. This procedure ensures that graphs are described with a regular vocabulary, leading to increased ease of comparison. We then classify document graphs by applying a set-based graph kernel that is intuitively sensible and able to deal with the disconnectedness of the constructed concept graphs. We compare this approach to standard approaches using non-graph, text-based features. We also do a comparison amongst different kernels that can be used to see which performs better.