Signal detection in genome sequences using complexity based features

M. Kargar, Aijun An, N. Cercone, Kayvan Tirdad, Morteza Zihayat
{"title":"Signal detection in genome sequences using complexity based features","authors":"M. Kargar, Aijun An, N. Cercone, Kayvan Tirdad, Morteza Zihayat","doi":"10.1145/2500863.2500867","DOIUrl":null,"url":null,"abstract":"In this work, we tackle the problem of evaluating complexity methods and measures for finding interesting signals in the whole genome of three prokaryotic organisms. In addition to previous complexity measures, new measures are introduced for representing Open Reading Frames (ORF). We apply different classification algorithms to determine which complexity measure results in better predictive performance in discriminating genes from pseudo-genes in ORFs. Also, we investigate whether positions and lengths of windows in ORFs have significant impact on distinguishing between genes and pseudo-genes. Different classification algorithms are applied for classifying ORFs into genes and pseudo-genes.","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"729 1","pages":"25-33"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2500863.2500867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we tackle the problem of evaluating complexity methods and measures for finding interesting signals in the whole genome of three prokaryotic organisms. In addition to previous complexity measures, new measures are introduced for representing Open Reading Frames (ORF). We apply different classification algorithms to determine which complexity measure results in better predictive performance in discriminating genes from pseudo-genes in ORFs. Also, we investigate whether positions and lengths of windows in ORFs have significant impact on distinguishing between genes and pseudo-genes. Different classification algorithms are applied for classifying ORFs into genes and pseudo-genes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于复杂性特征的基因组序列信号检测
在这项工作中,我们解决了在三种原核生物的全基因组中寻找有趣信号的评估复杂性方法和措施的问题。除了之前的复杂度度量外,还引入了新的度量来表示开放阅读帧(ORF)。我们应用不同的分类算法来确定哪种复杂性度量在orf中区分基因和伪基因方面具有更好的预测性能。此外,我们还研究了orf中窗口的位置和长度是否对基因和伪基因的区分有显著影响。将orf分类为基因和伪基因采用了不同的分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Replication of SCN5A Associations with Electrocardio-graphic Traits in African Americans from Clinical and Epidemiologic Studies. Drug-target interaction prediction for drug repurposing with probabilistic similarity logic Computational phenotype prediction of ionizing-radiation-resistant bacteria with a multiple-instance learning model Signal detection in genome sequences using complexity based features Heuristic approaches for time-lagged biclustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1