Computational phenotype prediction of ionizing-radiation-resistant bacteria with a multiple-instance learning model

Sabeur Aridhi, Mondher Maddouri, H. Sghaier, E. Nguifo
{"title":"Computational phenotype prediction of ionizing-radiation-resistant bacteria with a multiple-instance learning model","authors":"Sabeur Aridhi, Mondher Maddouri, H. Sghaier, E. Nguifo","doi":"10.1145/2500863.2500866","DOIUrl":null,"url":null,"abstract":"Ionizing-radiation-resistant bacteria (IRRB) are important in biotechnology. The use of these bacteria for the treatment of radioactive wastes is determined by their surprising capacity of adaptation to radionuclides and a variety of toxic molecules. In silico methods are unavailable for the purpose of phenotypic prediction and genotype-phenotype relationship discovery. We analyze basal DNA repair proteins of most known proteomes sequences of IRRB and ionizing-radiation-sensitive bacteria (IRSB) in order to learn a classifier that correctly predicts unseen bacteria. In this work, we formulate the problem of predicting IRRB as a multiple-instance learning (MIL) problem and we propose a novel approach for predicting IRRB. We use a local alignment technique to measure the similarity between protein sequences to predict ionizing-radiation-resistant bacteria. The first results are satisfactory and provide a MIL-based prediction system that predicts whether a bacterium belongs to IRRB or to IRSB. The proposed system is available online.","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"10 1","pages":"18-24"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2500863.2500866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ionizing-radiation-resistant bacteria (IRRB) are important in biotechnology. The use of these bacteria for the treatment of radioactive wastes is determined by their surprising capacity of adaptation to radionuclides and a variety of toxic molecules. In silico methods are unavailable for the purpose of phenotypic prediction and genotype-phenotype relationship discovery. We analyze basal DNA repair proteins of most known proteomes sequences of IRRB and ionizing-radiation-sensitive bacteria (IRSB) in order to learn a classifier that correctly predicts unseen bacteria. In this work, we formulate the problem of predicting IRRB as a multiple-instance learning (MIL) problem and we propose a novel approach for predicting IRRB. We use a local alignment technique to measure the similarity between protein sequences to predict ionizing-radiation-resistant bacteria. The first results are satisfactory and provide a MIL-based prediction system that predicts whether a bacterium belongs to IRRB or to IRSB. The proposed system is available online.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用多实例学习模型预测抗电离辐射细菌的计算表型
抗电离辐射细菌(IRRB)在生物技术中具有重要意义。利用这些细菌处理放射性废物是由它们对放射性核素和各种有毒分子的惊人适应能力决定的。计算机方法无法用于表型预测和基因型-表型关系的发现。我们分析了irb和电离辐射敏感细菌(IRSB)大多数已知蛋白质组序列的基础DNA修复蛋白,以学习正确预测未见细菌的分类器。在这项工作中,我们将IRRB预测问题表述为一个多实例学习(MIL)问题,并提出了一种预测IRRB的新方法。我们使用局部比对技术来测量蛋白质序列之间的相似性,以预测电离辐射抗性细菌。第一个结果令人满意,并提供了一个基于mil的预测系统来预测细菌是属于irb还是IRSB。提出的系统可在线使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Replication of SCN5A Associations with Electrocardio-graphic Traits in African Americans from Clinical and Epidemiologic Studies. Drug-target interaction prediction for drug repurposing with probabilistic similarity logic Computational phenotype prediction of ionizing-radiation-resistant bacteria with a multiple-instance learning model Signal detection in genome sequences using complexity based features Heuristic approaches for time-lagged biclustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1