Electrical conductivity across the alumina support layer following carbon nanotube growth

B. Dodson, Guohai Chen, Robert C. Davis, R. Vanfleet
{"title":"Electrical conductivity across the alumina support layer following carbon nanotube growth","authors":"B. Dodson, Guohai Chen, Robert C. Davis, R. Vanfleet","doi":"10.1116/6.0001115","DOIUrl":null,"url":null,"abstract":"Several electrical devices are formed by growing vertically aligned carbon nanotube (CNT) structures directly on a substrate. In order to attain high aspect ratio CNT forest growths, a support layer for the CNT catalyst, usually alumina, is generally required. In many cases, it has been found that current can pass from a conductive substrate, across the alumina support layer, and through the CNTs with minimal resistance. This is surprising in the cases where alumina is used because alumina has a resistivity of ρ>1014  Ω cm. This paper explores the mechanism responsible for current being able to cross the alumina support layer with minimal resistance following CNT growth by using scanning transmission electron microscopy imaging, energy dispersive x-ray spectroscopy, secondary ion mass spectroscopy, and two-point current-voltage (I-V) measurements. Through these methods, it is determined that exposure to the carbonaceous gas used during the CNT growth process is primarily responsible for this phenomenon.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":"34 1","pages":"052803"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0001115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several electrical devices are formed by growing vertically aligned carbon nanotube (CNT) structures directly on a substrate. In order to attain high aspect ratio CNT forest growths, a support layer for the CNT catalyst, usually alumina, is generally required. In many cases, it has been found that current can pass from a conductive substrate, across the alumina support layer, and through the CNTs with minimal resistance. This is surprising in the cases where alumina is used because alumina has a resistivity of ρ>1014  Ω cm. This paper explores the mechanism responsible for current being able to cross the alumina support layer with minimal resistance following CNT growth by using scanning transmission electron microscopy imaging, energy dispersive x-ray spectroscopy, secondary ion mass spectroscopy, and two-point current-voltage (I-V) measurements. Through these methods, it is determined that exposure to the carbonaceous gas used during the CNT growth process is primarily responsible for this phenomenon.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳纳米管生长后氧化铝支撑层的电导率
几种电子器件是通过直接在衬底上生长垂直排列的碳纳米管(CNT)结构而形成的。为了获得高纵横比碳纳米管森林生长,通常需要碳纳米管催化剂的支撑层,通常是氧化铝。在许多情况下,已经发现电流可以从导电衬底穿过氧化铝支撑层,并以最小的电阻通过碳纳米管。在使用氧化铝的情况下,这是令人惊讶的,因为氧化铝的电阻率ρ>1014 Ω cm。本文通过扫描透射电子显微镜成像、能量色散x射线光谱、二次离子质谱和两点电流-电压(I-V)测量,探讨了碳纳米管生长后电流能够以最小电阻穿过氧化铝支撑层的机制。通过这些方法,可以确定在碳纳米管生长过程中暴露于含碳气体是造成这种现象的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunable and scalable fabrication of plasmonic dimer arrays with sub-10 nm nanogaps by area-selective atomic layer deposition Characterization and optimization of bonding and interconnect technology for 3D stacking thin dies Ultradeep microaxicons in lithium niobate by focused Xe ion beam milling Self-powered ultraviolet photodiode based on lateral polarity structure GaN films Electrical conductivity across the alumina support layer following carbon nanotube growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1