{"title":"Outage probability of multihop free space optical communications over nakagami fading channels","authors":"Xuan Tang, Zhengyuan Xu, Zabih Ghassemlooy","doi":"10.1109/NOC-OCI.2013.6582890","DOIUrl":null,"url":null,"abstract":"In this paper, the end-to-end outage probability of a multihop free space optical (FSO) communication system over N independent Nakagami fading relay channels are analyzed. We assume that the channel state information-based relays have the knowledge of the channel states in the preceding hops. The Laplace transform of the inverse end-to-end signal-to-noise ratio (SNR) is derived in a closed form. Based on this expression, the outage probability involving N statistically independent, but not necessarily identically distributed (i.n.i.d) Nakagami relay channels is evaluated numerically via the inverse Laplace transform. The results indicate that the outage probability improves as N decreases and/or the arbitrary fading parameter m increases. This is because the probability that any of the cascaded fading channels is in deep fade decreases significantly. Therefore, the smaller N and/or larger m, the better the multihop relay channel.","PeriodicalId":57196,"journal":{"name":"光通信研究","volume":"3 1","pages":"199-202"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光通信研究","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/NOC-OCI.2013.6582890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, the end-to-end outage probability of a multihop free space optical (FSO) communication system over N independent Nakagami fading relay channels are analyzed. We assume that the channel state information-based relays have the knowledge of the channel states in the preceding hops. The Laplace transform of the inverse end-to-end signal-to-noise ratio (SNR) is derived in a closed form. Based on this expression, the outage probability involving N statistically independent, but not necessarily identically distributed (i.n.i.d) Nakagami relay channels is evaluated numerically via the inverse Laplace transform. The results indicate that the outage probability improves as N decreases and/or the arbitrary fading parameter m increases. This is because the probability that any of the cascaded fading channels is in deep fade decreases significantly. Therefore, the smaller N and/or larger m, the better the multihop relay channel.