{"title":"Thermal energy harvesting through the fur of endothermic animals","authors":"E. Bäumker, P. Beck, P. Woias","doi":"10.1109/PowerMEMS49317.2019.30773705859","DOIUrl":null,"url":null,"abstract":"This paper focuses on the design parameters of the thermal connection for a thermoelectric energy harvesting system mounted onto endothermic animals. To the best of our knowledge, this is the first time that the thermal conductivity through a mammal’s fur is analyzed with a specially designed heatsink. An analytical model is built to predict the resulting thermal resistances and is validated with experimental results for two different fur lengths. We show that an optimized design of the thermal interface reduces its thermal resistance up to 38% compared to a trivial design while lowering its weight for about 23%. It is found that the most important design parameter of such a thermal connector is the ability to slide into the fur.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"32 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.30773705859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the design parameters of the thermal connection for a thermoelectric energy harvesting system mounted onto endothermic animals. To the best of our knowledge, this is the first time that the thermal conductivity through a mammal’s fur is analyzed with a specially designed heatsink. An analytical model is built to predict the resulting thermal resistances and is validated with experimental results for two different fur lengths. We show that an optimized design of the thermal interface reduces its thermal resistance up to 38% compared to a trivial design while lowering its weight for about 23%. It is found that the most important design parameter of such a thermal connector is the ability to slide into the fur.