Pub Date : 2019-12-01DOI: 10.1109/PowerMEMS49317.2019.41031609048
K. Nakamura, A. Masuda, C. Sawai
This study presents a dynamical modeling and analysis of a piezoelectric energy harvester which converts a translational motion into sustained vibration via stick-slip motion. The presented device consists of an Lshaped cantilever oscillator with a piezoelectric transducer (macro-fiber composite) glued on it. When its tip is rubbed by a linearly moving friction pad, a friction-induced vibration yields a power flow from the mechanical work applied to move the friction pad to the piezoelectric transducer. In this study, the oscillator was modeled as a 2-DOF system, and the equations of motions were derived via the Lagrange equation of motion. A preliminary study suggested that there were several typical modes of tip motions, including one always kept contact with the surface of the friction pad, and another one kept hopping-like motion on the surface. Numerical simulations were conducted to find the underlying physical mechanism of the behavior of those tip motion. As the results of the numerical simulations, the former motion mode was successfully reproduced, while the latter motion mode was not sufficiently reproduced, which may require another degreeof-freedom to represent the higher vibration mode of the oscillator.
{"title":"Modeling and Analysis of a Piezoelectric Stick-slip Energy Harvester","authors":"K. Nakamura, A. Masuda, C. Sawai","doi":"10.1109/PowerMEMS49317.2019.41031609048","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.41031609048","url":null,"abstract":"This study presents a dynamical modeling and analysis of a piezoelectric energy harvester which converts a translational motion into sustained vibration via stick-slip motion. The presented device consists of an Lshaped cantilever oscillator with a piezoelectric transducer (macro-fiber composite) glued on it. When its tip is rubbed by a linearly moving friction pad, a friction-induced vibration yields a power flow from the mechanical work applied to move the friction pad to the piezoelectric transducer. In this study, the oscillator was modeled as a 2-DOF system, and the equations of motions were derived via the Lagrange equation of motion. A preliminary study suggested that there were several typical modes of tip motions, including one always kept contact with the surface of the friction pad, and another one kept hopping-like motion on the surface. Numerical simulations were conducted to find the underlying physical mechanism of the behavior of those tip motion. As the results of the numerical simulations, the former motion mode was successfully reproduced, while the latter motion mode was not sufficiently reproduced, which may require another degreeof-freedom to represent the higher vibration mode of the oscillator.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"32 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73485066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-01DOI: 10.1109/PowerMEMS49317.2019.30773700244
Y. Jia, G. Moubarak, Y. Shi, S.J. Ponnudurai, M. Jackson
This paper proposes a novel broadband oscillatory mechanism, with a first experimental proof-of-concept, to harvest broadband noise vibration energy while achieving resonant amplification. Conventional direct oscillators are limited to narrow operational frequency bands; while bi-stable oscillators, albeit being frequency independent, responds in a non-resonant nature. In fact, both linear and nonlinear oscillators have been theoretically and experimentally shown in the literature to perform equally poorly towards broadband noise excitations. The system proposed here internally couples a bi-stable system to either a direct oscillator or an auto-parametric oscillator, in order to inherently achieve resonant amplification by matching the snap through frequency to the subsidiary resonator. The resultant system has both numerically and experimentally demonstrated to accumulate over an order of magnitude higher in average response amplitude compared to either direct oscillators or bi-stable oscillators. The proposed concept validated and demonstrated here, establishes for the first time a resonant approach to harvest broadband noise excitations.
{"title":"Inherently Broadband-Resonant Mechanism for Vibration Energy Harvesting: A First Proof-of-Concept Experimental Validation","authors":"Y. Jia, G. Moubarak, Y. Shi, S.J. Ponnudurai, M. Jackson","doi":"10.1109/PowerMEMS49317.2019.30773700244","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.30773700244","url":null,"abstract":"This paper proposes a novel broadband oscillatory mechanism, with a first experimental proof-of-concept, to harvest broadband noise vibration energy while achieving resonant amplification. Conventional direct oscillators are limited to narrow operational frequency bands; while bi-stable oscillators, albeit being frequency independent, responds in a non-resonant nature. In fact, both linear and nonlinear oscillators have been theoretically and experimentally shown in the literature to perform equally poorly towards broadband noise excitations. The system proposed here internally couples a bi-stable system to either a direct oscillator or an auto-parametric oscillator, in order to inherently achieve resonant amplification by matching the snap through frequency to the subsidiary resonator. The resultant system has both numerically and experimentally demonstrated to accumulate over an order of magnitude higher in average response amplitude compared to either direct oscillators or bi-stable oscillators. The proposed concept validated and demonstrated here, establishes for the first time a resonant approach to harvest broadband noise excitations.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"65 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78737399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-01DOI: 10.1109/PowerMEMS49317.2019.51289500364
A. Porcar-Climent, N. Jackson
The narrow bandwidth of MEMS vibration energy harvesting devices is considered a major challenge that limits the implementation of the devices into real-life applications. This paper reports on experimental validation of widening the bandwidth of a piezoelectric cantilever using a movable mass. The widening effect is caused from a change in center of gravity caused from movable metallic spheres. The goal of this study was to investigate the effects of the amount of movable mass by varying the number of spheres and the size of the spheres. The results demonstrated a significant increase in bandwidth from 1.8 Hz to 10.6 Hz for the control (no movable component) and eight embedded 10mm spheres respectively. Keeping the overall amount of movable mass to be similar but decreasing the size and increasing the number of spheres resulted in a further increase in bandwidth to 13.4 Hz.
{"title":"Rolling Mass for Wide bandwidth Vibration Energy Harvesting","authors":"A. Porcar-Climent, N. Jackson","doi":"10.1109/PowerMEMS49317.2019.51289500364","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.51289500364","url":null,"abstract":"The narrow bandwidth of MEMS vibration energy harvesting devices is considered a major challenge that limits the implementation of the devices into real-life applications. This paper reports on experimental validation of widening the bandwidth of a piezoelectric cantilever using a movable mass. The widening effect is caused from a change in center of gravity caused from movable metallic spheres. The goal of this study was to investigate the effects of the amount of movable mass by varying the number of spheres and the size of the spheres. The results demonstrated a significant increase in bandwidth from 1.8 Hz to 10.6 Hz for the control (no movable component) and eight embedded 10mm spheres respectively. Keeping the overall amount of movable mass to be similar but decreasing the size and increasing the number of spheres resulted in a further increase in bandwidth to 13.4 Hz.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"44 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84423870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-01DOI: 10.1109/PowerMEMS49317.2019.41031605855
N. Matsuura, H. Ishii, Y. Tanaka
Self-assembled electrets (SAEs), in which polar molecules such as Alq3 and TPBi are spontaneously ordered by vapor deposition, are promising materials for vibrational energy generators (VEGs). SAEs can simplify fabrication process of VEGs because the charging process, e.g. corona charging, is not required; however, SAEs are sensitive for light irradiation because charge carriers are generated by exciton dissociation, leading to compensation of polarization charge on the SAE surface. In order to restrict charge generation, in this study, the dye molecule is doped into SAE having a wider optical gap than that of dye molecule. In the doped SAE, exciton energy is transferred to the dye, resulting in exciton quenching. In this work, we doped Alq$_{3}(2.4$ vol%) to TPBi which has a wide optical gap, and stability of VEG composed of the doped film was evaluated during light irradiation. We demonstrate that the retention time of 50% loss in the device was 2.6 times longer than that of neat TPBi-based VEG. This result suggests that the application of doped SAE is quite useful to realize long-lived SAE-based VEG.
{"title":"Stability improvement against light irradiation by dye doping in self-assembled electret-based vibrational energy harvester","authors":"N. Matsuura, H. Ishii, Y. Tanaka","doi":"10.1109/PowerMEMS49317.2019.41031605855","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.41031605855","url":null,"abstract":"Self-assembled electrets (SAEs), in which polar molecules such as Alq3 and TPBi are spontaneously ordered by vapor deposition, are promising materials for vibrational energy generators (VEGs). SAEs can simplify fabrication process of VEGs because the charging process, e.g. corona charging, is not required; however, SAEs are sensitive for light irradiation because charge carriers are generated by exciton dissociation, leading to compensation of polarization charge on the SAE surface. In order to restrict charge generation, in this study, the dye molecule is doped into SAE having a wider optical gap than that of dye molecule. In the doped SAE, exciton energy is transferred to the dye, resulting in exciton quenching. In this work, we doped Alq$_{3}(2.4$ vol%) to TPBi which has a wide optical gap, and stability of VEG composed of the doped film was evaluated during light irradiation. We demonstrate that the retention time of 50% loss in the device was 2.6 times longer than that of neat TPBi-based VEG. This result suggests that the application of doped SAE is quite useful to realize long-lived SAE-based VEG.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"331 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77143897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-01DOI: 10.1109/powermems49317.2019.002
H. Tani, M. Sugimoto, K. Fushihara, Y. Nakao, R. Renguo, S. Koganezawa, Tagawa
In this study, we developed a triboelectric nanogenerator (TENG) for intelligent tires. This TENG was adhered on the inner surface of a racing cart tire. The charged voltage and output voltage of the TENG were evaluated on the moving belt. The output voltage signals were observed at the contact patch position. The charged voltage to the $10 mu mathrm{F}$ capacitor of was found to be approximately 14 V at the speed of 16 km/h after the tire rolled for 15 min. These results suggest that TENG can work as an energy harvester for temperature and pressure sensors built into intelligent tires as well as for wireless transmission.
本研究开发了一种用于智能轮胎的摩擦电纳米发电机(TENG)。该TENG粘附在赛车轮胎的内表面。在运动带上对TENG的充电电压和输出电压进行了评估。在接触贴片位置观察输出电压信号。在轮胎滚动15分钟后,在16公里/小时的速度下,对$10 mu math {F}$电容器的充电电压约为14 V。这些结果表明,TENG可以作为内置在智能轮胎中的温度和压力传感器的能量收集器以及无线传输。
{"title":"Energy Harvesting from Triboelectric Nanogenerator Attached Inside Rolling Tire","authors":"H. Tani, M. Sugimoto, K. Fushihara, Y. Nakao, R. Renguo, S. Koganezawa, Tagawa","doi":"10.1109/powermems49317.2019.002","DOIUrl":"https://doi.org/10.1109/powermems49317.2019.002","url":null,"abstract":"In this study, we developed a triboelectric nanogenerator (TENG) for intelligent tires. This TENG was adhered on the inner surface of a racing cart tire. The charged voltage and output voltage of the TENG were evaluated on the moving belt. The output voltage signals were observed at the contact patch position. The charged voltage to the $10 mu mathrm{F}$ capacitor of was found to be approximately 14 V at the speed of 16 km/h after the tire rolled for 15 min. These results suggest that TENG can work as an energy harvester for temperature and pressure sensors built into intelligent tires as well as for wireless transmission.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"54 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78281416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-01DOI: 10.1109/PowerMEMS49317.2019.61547413059
R. Escalona-Villalpando, A. Sandoval-García, S. Minteer, L. Arriaga, J. Ledesma-García
A self-powered glucose sensor (SPGS) system integrates a biofuel cell (BFC) as a power source for operation of a biosensor. SPGS uses glucose as an analyte to be quantified and as a fuel, since it’s a molecule of biomedical interest because it’s related to diabetes. Glucose oxidase electrode-based was used in the anode and laccase based-electrode was used in the cathode within a microfluidic device where different glucose concentrations between 0 and 10 mM were used. In the polarization and current curves were observed an increase at a higher glucose concentration, without altering its operation in the presence interferences. This result indicated an improvement in the performance of an SPGS by integrating a microfluidic device, increasing the stability, limit of detection, quantification, stability and sensitivity for the quantification of glucose through the operation of a BFC.
{"title":"Improving a self-powered glucose biosensor system using a microfluidic design","authors":"R. Escalona-Villalpando, A. Sandoval-García, S. Minteer, L. Arriaga, J. Ledesma-García","doi":"10.1109/PowerMEMS49317.2019.61547413059","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.61547413059","url":null,"abstract":"A self-powered glucose sensor (SPGS) system integrates a biofuel cell (BFC) as a power source for operation of a biosensor. SPGS uses glucose as an analyte to be quantified and as a fuel, since it’s a molecule of biomedical interest because it’s related to diabetes. Glucose oxidase electrode-based was used in the anode and laccase based-electrode was used in the cathode within a microfluidic device where different glucose concentrations between 0 and 10 mM were used. In the polarization and current curves were observed an increase at a higher glucose concentration, without altering its operation in the presence interferences. This result indicated an improvement in the performance of an SPGS by integrating a microfluidic device, increasing the stability, limit of detection, quantification, stability and sensitivity for the quantification of glucose through the operation of a BFC.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"83 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83799532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-01DOI: 10.1109/PowerMEMS49317.2019.30773708559
D. Hasan, Jianxiong Zhu, Hao Wang, Othman Bin Sulaiman, Mahmut Sami Yazici, T. Grzebyk, R. Walczak, J. Dziuban, Chengkuo Lee
We report a type of miniaturized and self-powered gas identification platform for wearable applications that works on the principle of ion mobility transients offering a high degree of selectivity for a variety of gas species. The self-powered operation of the sensor exploited the high voltage output from a systematically designed triboelectric nanogenerator (TENG). The multi-layer TENG platform provided a voltage of the order kV just by finger triggering, which was further leveraged in a special type of electrode (tip-plate) configuration making it possible to obtain plasma discharge of a wide range of gas molecules at atmospheric condition. By adding an additional collector plate at a specific distance within the device configuration, we successfully demonstrated different transient characteristics for different gas molecules which can be directly attributed to their differences in terms of ion-mobility. Our analysis clearly indicated unique and repeatable discharge characteristics at various mixture conditions and atmospheric pressure. We further employ machine learning to classify different gases based on the transient dynamics observed at the collector plate. High classification accuracy was obtained for four different gases even using a shallow network that indicated the potential of the proposed platform as a low-power, small foot-print wearable Internet of Things (IoTs) device for gas leak detection. It is envisioned that the proposed platform can enable early detection of gas species by incorporating the transient development of the multitude of time-domain finger-prints into the machine learning model.
{"title":"Feasibility Study of High-Voltage Ion Mobility for Gas Identification Based on Triboelectric Power Source","authors":"D. Hasan, Jianxiong Zhu, Hao Wang, Othman Bin Sulaiman, Mahmut Sami Yazici, T. Grzebyk, R. Walczak, J. Dziuban, Chengkuo Lee","doi":"10.1109/PowerMEMS49317.2019.30773708559","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.30773708559","url":null,"abstract":"We report a type of miniaturized and self-powered gas identification platform for wearable applications that works on the principle of ion mobility transients offering a high degree of selectivity for a variety of gas species. The self-powered operation of the sensor exploited the high voltage output from a systematically designed triboelectric nanogenerator (TENG). The multi-layer TENG platform provided a voltage of the order kV just by finger triggering, which was further leveraged in a special type of electrode (tip-plate) configuration making it possible to obtain plasma discharge of a wide range of gas molecules at atmospheric condition. By adding an additional collector plate at a specific distance within the device configuration, we successfully demonstrated different transient characteristics for different gas molecules which can be directly attributed to their differences in terms of ion-mobility. Our analysis clearly indicated unique and repeatable discharge characteristics at various mixture conditions and atmospheric pressure. We further employ machine learning to classify different gases based on the transient dynamics observed at the collector plate. High classification accuracy was obtained for four different gases even using a shallow network that indicated the potential of the proposed platform as a low-power, small foot-print wearable Internet of Things (IoTs) device for gas leak detection. It is envisioned that the proposed platform can enable early detection of gas species by incorporating the transient development of the multitude of time-domain finger-prints into the machine learning model.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"22 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88177254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-01DOI: 10.1109/PowerMEMS49317.2019.51289501164
Tai Nguyen, Noureddine Adjeroud, S. Glinšek, J. Guillot, J. Polesel-Maris
Synthesis of a piezoelectric aluminum nitride (AlN) films is often challenged by high temperature processes in order to obtain highly crystalline (002)-oriented films with low impurity levels. In this study, by means of plasma-enhanced atomic layer deposition (PEALD), high quality AlN films were grown at low deposition temperatures of $180^{circ}C$ and $250^{circ}C$. The deposition temperatures and the purging times in the PEALD sequence have been carefully investigated to obtain preferential (002) plane-normal orientation of the crystallites with piezoelectric properties. Interestingly, low temperature processes allow growing AlN films directly on nickel foils as magnetoelectric layer-by-layer composites in which the degradation of magnetic properties is negligible in this PEALD temperature range. The highest piezoelectric coefficient $e_{31,f}$ was evaluated to be about 0.37 C$.m^{-2}$ for the (002)-oriented AlN film of 500 nm-thick. The magnetoelectric coefficient was measured to be about 3.5 V.cm$^{-1}$.Oe-1 with a DC bias magnetic field of 30 Oe superimposed by a weak AC magnetic field of 12.5 Oe modulated at 46 Hz.
{"title":"Low temperature growth of piezoelectric AlN films by plasma enhanced atomic layer deposition and magnetoelectric coupling with nickel for energy harvesting applications","authors":"Tai Nguyen, Noureddine Adjeroud, S. Glinšek, J. Guillot, J. Polesel-Maris","doi":"10.1109/PowerMEMS49317.2019.51289501164","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.51289501164","url":null,"abstract":"Synthesis of a piezoelectric aluminum nitride (AlN) films is often challenged by high temperature processes in order to obtain highly crystalline (002)-oriented films with low impurity levels. In this study, by means of plasma-enhanced atomic layer deposition (PEALD), high quality AlN films were grown at low deposition temperatures of $180^{circ}C$ and $250^{circ}C$. The deposition temperatures and the purging times in the PEALD sequence have been carefully investigated to obtain preferential (002) plane-normal orientation of the crystallites with piezoelectric properties. Interestingly, low temperature processes allow growing AlN films directly on nickel foils as magnetoelectric layer-by-layer composites in which the degradation of magnetic properties is negligible in this PEALD temperature range. The highest piezoelectric coefficient $e_{31,f}$ was evaluated to be about 0.37 C$.m^{-2}$ for the (002)-oriented AlN film of 500 nm-thick. The magnetoelectric coefficient was measured to be about 3.5 V.cm$^{-1}$.Oe-1 with a DC bias magnetic field of 30 Oe superimposed by a weak AC magnetic field of 12.5 Oe modulated at 46 Hz.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"37 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90977776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-01DOI: 10.1109/PowerMEMS49317.2019.92321109369
Ryo Ichige, Nobuaki Kuriyama, Y. Umino, T. Tsukamoto, K. Hashikura, K. Yamada, Takaaki Suzuki
In this paper, we design the size of metamaterial structure for elastic layer of piezoelectric vibration energy harvester(PVEH). Since controlling bending stiffness of the PVEH by changing the size of metamaterial structure, it is possible to improve device performance by optimizing the size of the metamaterial structure. In the FEM analysis of three types of the PVEH having different size of metamaterial structure, the PVEH which has smallest metamaterial structure reduces the resonance frequency by 16 % and improves the power generation by 70 % compared to the PVEH which has largest metamaterial structure.
{"title":"Size Optimization of Metamaterial Structure for Elastic Layer of a Piezoelectric Vibration Energy Harvester","authors":"Ryo Ichige, Nobuaki Kuriyama, Y. Umino, T. Tsukamoto, K. Hashikura, K. Yamada, Takaaki Suzuki","doi":"10.1109/PowerMEMS49317.2019.92321109369","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.92321109369","url":null,"abstract":"In this paper, we design the size of metamaterial structure for elastic layer of piezoelectric vibration energy harvester(PVEH). Since controlling bending stiffness of the PVEH by changing the size of metamaterial structure, it is possible to improve device performance by optimizing the size of the metamaterial structure. In the FEM analysis of three types of the PVEH having different size of metamaterial structure, the PVEH which has smallest metamaterial structure reduces the resonance frequency by 16 % and improves the power generation by 70 % compared to the PVEH which has largest metamaterial structure.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"32 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90996911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-01DOI: 10.1109/PowerMEMS49317.2019.71805308205
A. Y. Pandiyan, R. L. Rosa, M. Kiziroglou, E. Yeatman
Ultrasonic Power Transmission (UPT) has gained attention for powering implanted diagnostic devices due to its non-invasive properties. However, UPT in free-space is still less exploited with considerable potential for powering Wireless Sensor Networks (WSNs). An important challenge in understanding the significant parameters for a UPT system is to comprehend the losses and quantify the limitations of the technology in terms of distance, frequency and transmission power (ISO226). In this work, the authors attempt to model the transmission link of an UPT system, identifying variables which can be modified for obtaining maximum power output from the wireless power transfer through formulation and experimental results. Ultrasonic transducers of two varying frequencies were used in free space power transmission to understand the absorptive and geometric attenuation of sound waves in air, experimentally. A measured power of 6.3$mu$W(40kHz) and 8. 3nW(100kHz) was observed over 30cm. These observations may enable acoustic powered WSNs in automobiles powering multi-nodes using single transmitter.
{"title":"Understanding Far Field Ultrasonic Power Transmission for Automobile Sensor Networks in Free Space","authors":"A. Y. Pandiyan, R. L. Rosa, M. Kiziroglou, E. Yeatman","doi":"10.1109/PowerMEMS49317.2019.71805308205","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.71805308205","url":null,"abstract":"Ultrasonic Power Transmission (UPT) has gained attention for powering implanted diagnostic devices due to its non-invasive properties. However, UPT in free-space is still less exploited with considerable potential for powering Wireless Sensor Networks (WSNs). An important challenge in understanding the significant parameters for a UPT system is to comprehend the losses and quantify the limitations of the technology in terms of distance, frequency and transmission power (ISO226). In this work, the authors attempt to model the transmission link of an UPT system, identifying variables which can be modified for obtaining maximum power output from the wireless power transfer through formulation and experimental results. Ultrasonic transducers of two varying frequencies were used in free space power transmission to understand the absorptive and geometric attenuation of sound waves in air, experimentally. A measured power of 6.3$mu$W(40kHz) and 8. 3nW(100kHz) was observed over 30cm. These observations may enable acoustic powered WSNs in automobiles powering multi-nodes using single transmitter.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"38 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91305382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}