Prediction of negative hydrogen ion density in permanent magnet-based helicon ion source (HELEN) using deep learning techniques

Vipin Shukla, Debrup Mukhopadhyay, A. Pandey, M. Bandyopadhyay, V. Pandya
{"title":"Prediction of negative hydrogen ion density in permanent magnet-based helicon ion source (HELEN) using deep learning techniques","authors":"Vipin Shukla, Debrup Mukhopadhyay, A. Pandey, M. Bandyopadhyay, V. Pandya","doi":"10.1063/5.0057431","DOIUrl":null,"url":null,"abstract":"In the present work, a deep-learning model is developed for a permanent magnet-based helicon plasma source. Non-invasive cavity ring-down spectroscopy (CRDS) characterizes the HELEN ion source as a negative hydrogen ion source. This paper discusses different deep learning techniques for modelling the ion source and subsequently predicts the ion source density. Experiments were conducted measuring the plasma density for different ranges of hydrogen gas pressure, magnetic field and RF power. Consequently, experimental data trains the deep learning model. The performance of various deep learning models has been assessed by the root mean squared error and the coefficient of determination values. The deep learning techniques also develop a correlation between the electron temperature and plasma densities. It reasonably mimics the behaviour of the HELEN ion source and can classify the helicon plasma generation at a high RF power range (800-850 W). Also, the influence of other input parameters such as gas pressure and the magnetic field is assessed using the correlation matrix.","PeriodicalId":21797,"journal":{"name":"SEVENTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2020)","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEVENTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0057431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the present work, a deep-learning model is developed for a permanent magnet-based helicon plasma source. Non-invasive cavity ring-down spectroscopy (CRDS) characterizes the HELEN ion source as a negative hydrogen ion source. This paper discusses different deep learning techniques for modelling the ion source and subsequently predicts the ion source density. Experiments were conducted measuring the plasma density for different ranges of hydrogen gas pressure, magnetic field and RF power. Consequently, experimental data trains the deep learning model. The performance of various deep learning models has been assessed by the root mean squared error and the coefficient of determination values. The deep learning techniques also develop a correlation between the electron temperature and plasma densities. It reasonably mimics the behaviour of the HELEN ion source and can classify the helicon plasma generation at a high RF power range (800-850 W). Also, the influence of other input parameters such as gas pressure and the magnetic field is assessed using the correlation matrix.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习技术预测永磁体基螺旋离子源(HELEN)中的负氢离子密度
在本工作中,开发了一个基于永磁的螺旋等离子体源的深度学习模型。非侵入腔衰荡光谱(CRDS)将HELEN离子源表征为负氢离子源。本文讨论了用于离子源建模的不同深度学习技术,并随后预测了离子源密度。实验测量了不同氢气压力、磁场和射频功率范围下的等离子体密度。因此,实验数据训练深度学习模型。各种深度学习模型的性能通过均方根误差和决定系数值进行了评估。深度学习技术还发展了电子温度和等离子体密度之间的相关性。它合理地模拟了HELEN离子源的行为,并可以在高射频功率范围(800-850 W)下对螺旋等离子体的产生进行分类。此外,使用相关矩阵评估了其他输入参数(如气体压力和磁场)的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic analysis on supporting structure of air borne vehicle subjected to random vibrations Recent achievements in studies of negative beam formation and acceleration in the tandem accelerator at Budker Institute Experimental study on foam concrete with polypropylene fibers and Nylon fibers Prediction of negative hydrogen ion density in permanent magnet-based helicon ion source (HELEN) using deep learning techniques Analysis on slot curvature and contact stresses on Geneva wheel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1