Arc-fault detector algorithm evaluation method utilizing prerecorded arcing signatures

J. Johnson, J. Kang
{"title":"Arc-fault detector algorithm evaluation method utilizing prerecorded arcing signatures","authors":"J. Johnson, J. Kang","doi":"10.1109/PVSC.2012.6317856","DOIUrl":null,"url":null,"abstract":"The 2011 National Electrical Code® Article 690.11 requires photovoltaic systems on or penetrating a building to include a DC arc-fault protection device. In order to satisfy this requirement, new Arc-Fault Detectors (AFDs) are being developed by multiple manufacturers including Sensata Technologies. Arc-fault detection algorithms often utilize the AC noise on the PV string to determine when arcing conditions exist in the DC system. In order to accelerate the development and testing of Sensata Technologies' arc-fault detection algorithm, Sandia National Laboratories (SNL) provided a number of data sets. These prerecorded 10 MHz baseline and arc-fault data sets included different inverter and arc-fault noise signatures. Sensata Technologies created a data evaluation method focused on regeneration of the prerecorded arcing and baseline test data with an arbitrary function generator, thereby reducing AFD development time.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"25 1","pages":"001378-001382"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2012.6317856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

The 2011 National Electrical Code® Article 690.11 requires photovoltaic systems on or penetrating a building to include a DC arc-fault protection device. In order to satisfy this requirement, new Arc-Fault Detectors (AFDs) are being developed by multiple manufacturers including Sensata Technologies. Arc-fault detection algorithms often utilize the AC noise on the PV string to determine when arcing conditions exist in the DC system. In order to accelerate the development and testing of Sensata Technologies' arc-fault detection algorithm, Sandia National Laboratories (SNL) provided a number of data sets. These prerecorded 10 MHz baseline and arc-fault data sets included different inverter and arc-fault noise signatures. Sensata Technologies created a data evaluation method focused on regeneration of the prerecorded arcing and baseline test data with an arbitrary function generator, thereby reducing AFD development time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用预录电弧特征的电弧故障检测器算法评估方法
2011年国家电气规范®第690.11条要求建筑物上或穿透建筑物的光伏系统包括直流电弧故障保护装置。为了满足这一要求,包括Sensata Technologies在内的多家制造商正在开发新的电弧故障检测器(afd)。电弧故障检测算法通常利用PV串上的交流噪声来确定直流系统中何时存在电弧条件。为了加快Sensata Technologies电弧故障检测算法的开发和测试,桑迪亚国家实验室(SNL)提供了大量数据集。这些预先记录的10 MHz基线和电弧故障数据集包括不同的逆变器和电弧故障噪声特征。Sensata Technologies创建了一种数据评估方法,专注于使用任意函数生成器再生预先记录的弧形和基线测试数据,从而缩短了AFD的开发时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Lightweight PV module design for Building Integrated Photovoltaics Advances in silicon surface texturization by metal assisted chemical etching for photovoltaic applications Inverse Metamorphic III-V/epi-SiGe Tandem Solar Cell Performance Assessed by Optical and Electrical Modeling Enabling High-Efficiency InAs/GaAs Quantum Dot Solar Cells by Epitaxial Lift-Off and Light Management An autocorrelation-based copula model for producing realistic clear-sky index and photovoltaic power generation time-series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1