Session 13 overview: Machine learning and signal processing: Digital architectures and systems subcommittee

D. Markovic, M. Motomura, Byeong-Gyu Nam
{"title":"Session 13 overview: Machine learning and signal processing: Digital architectures and systems subcommittee","authors":"D. Markovic, M. Motomura, Byeong-Gyu Nam","doi":"10.1109/ISSCC.2018.8310260","DOIUrl":null,"url":null,"abstract":"Architectures supporting machine learning for embedded perception and cognition are continuing their rapid evolution, inspired by modern data analytics and enabled by the low energy cost of CMOS processing. This makes it feasible to migrate data analytics toward edge and wearable devices. To further support increased requirements for multiuser connectivity and sparse data, multiuser MIMO and compressive reconstruction are also required.","PeriodicalId":6511,"journal":{"name":"2016 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"134 1","pages":"214-215"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Architectures supporting machine learning for embedded perception and cognition are continuing their rapid evolution, inspired by modern data analytics and enabled by the low energy cost of CMOS processing. This makes it feasible to migrate data analytics toward edge and wearable devices. To further support increased requirements for multiuser connectivity and sparse data, multiuser MIMO and compressive reconstruction are also required.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第13次会议概述:机器学习和信号处理:数字架构和系统小组委员会
受现代数据分析的启发和CMOS处理的低能耗成本的推动,支持嵌入式感知和认知的机器学习架构正在继续快速发展。这使得将数据分析迁移到边缘和可穿戴设备成为可能。为了进一步支持对多用户连接和稀疏数据日益增长的需求,还需要多用户MIMO和压缩重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Foreword: Building on 70 Years of Innovation in Solid-State Circuit Design A 45.8dB-SNR 120fps 100pF-Load Self-Capacitance Touch-Screen Controller with Enhanced In-Band Common Noise Immunity Using Noise Antenna Reference Catalyzing the Impossible: Silicon, Software, and Smarts for the SysMoore Era A 210×340×50µm Integrated CMOS System f0r Micro-Robots with Energy Harvesting, Sensing, Processing, Communication and Actuation Session 25 Overview: DRAM Memory Subcommittee
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1