Yu-Hyeong Jang, Jun Zhao, Hyoung-Moon Kim, Kyusang Yu, Sunghoon Kwon, Sunghwan Kim
{"title":"New closed‐form efficient estimator for multivariate gamma distribution","authors":"Yu-Hyeong Jang, Jun Zhao, Hyoung-Moon Kim, Kyusang Yu, Sunghoon Kwon, Sunghwan Kim","doi":"10.1111/stan.12299","DOIUrl":null,"url":null,"abstract":"Maximum likelihood estimation is used widely in classical statistics. However, except in a few cases, it does not have a closed form. Furthermore, it takes time to derive the maximum likelihood estimator (MLE) owing to the use of iterative methods such as Newton–Raphson. Nonetheless, this estimation method has several advantages, chief among them being the invariance property and asymptotic normality. Based on the first approximation to the solution of the likelihood equation, we obtain an estimator that has the same asymptotic behavior as the MLE for multivariate gamma distribution. The newly proposed estimator, denoted as MLECE$$ {\\mathrm{MLE}}_{\\mathrm{CE}} $$ , is also in closed form as long as the n$$ \\sqrt{n} $$ ‐consistent initial estimator is in the closed form. Hence, we develop some closed‐form n$$ \\sqrt{n} $$ ‐consistent estimators for multivariate gamma distribution to improve the small‐sample property. MLECE$$ {\\mathrm{MLE}}_{\\mathrm{CE}} $$ is an alternative to MLE and performs better compared to MLE in terms of computation time, especially for large datasets, and stability. For the bivariate gamma distribution, the MLECE$$ {\\mathrm{MLE}}_{\\mathrm{CE}} $$ is over 130 times faster than the MLE, and as the sample size increasing, the MLECE$$ {\\mathrm{MLE}}_{\\mathrm{CE}} $$ is over 200 times faster than the MLE. Owing to the instant calculation of the proposed estimator, it can be used in state–space modeling or real‐time processing models.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"19 1","pages":"555 - 572"},"PeriodicalIF":1.4000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12299","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Maximum likelihood estimation is used widely in classical statistics. However, except in a few cases, it does not have a closed form. Furthermore, it takes time to derive the maximum likelihood estimator (MLE) owing to the use of iterative methods such as Newton–Raphson. Nonetheless, this estimation method has several advantages, chief among them being the invariance property and asymptotic normality. Based on the first approximation to the solution of the likelihood equation, we obtain an estimator that has the same asymptotic behavior as the MLE for multivariate gamma distribution. The newly proposed estimator, denoted as MLECE$$ {\mathrm{MLE}}_{\mathrm{CE}} $$ , is also in closed form as long as the n$$ \sqrt{n} $$ ‐consistent initial estimator is in the closed form. Hence, we develop some closed‐form n$$ \sqrt{n} $$ ‐consistent estimators for multivariate gamma distribution to improve the small‐sample property. MLECE$$ {\mathrm{MLE}}_{\mathrm{CE}} $$ is an alternative to MLE and performs better compared to MLE in terms of computation time, especially for large datasets, and stability. For the bivariate gamma distribution, the MLECE$$ {\mathrm{MLE}}_{\mathrm{CE}} $$ is over 130 times faster than the MLE, and as the sample size increasing, the MLECE$$ {\mathrm{MLE}}_{\mathrm{CE}} $$ is over 200 times faster than the MLE. Owing to the instant calculation of the proposed estimator, it can be used in state–space modeling or real‐time processing models.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.