Variational Depth Superresolution Using Example-Based Edge Representations

David Ferstl, M. Rüther, H. Bischof
{"title":"Variational Depth Superresolution Using Example-Based Edge Representations","authors":"David Ferstl, M. Rüther, H. Bischof","doi":"10.1109/ICCV.2015.66","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel method for depth image superresolution which combines recent advances in example based upsampling with variational superresolution based on a known blur kernel. Most traditional depth superresolution approaches try to use additional high resolution intensity images as guidance for superresolution. In our method we learn a dictionary of edge priors from an external database of high and low resolution examples. In a novel variational sparse coding approach this dictionary is used to infer strong edge priors. Additionally to the traditional sparse coding constraints the difference in the overlap of neighboring edge patches is minimized in our optimization. These edge priors are used in a novel variational superresolution as anisotropic guidance of the higher order regularization. Both the sparse coding and the variational superresolution of the depth are solved based on a primal-dual formulation. In an exhaustive numerical and visual evaluation we show that our method clearly outperforms existing approaches on multiple real and synthetic datasets.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"20 1","pages":"513-521"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

Abstract

In this paper we propose a novel method for depth image superresolution which combines recent advances in example based upsampling with variational superresolution based on a known blur kernel. Most traditional depth superresolution approaches try to use additional high resolution intensity images as guidance for superresolution. In our method we learn a dictionary of edge priors from an external database of high and low resolution examples. In a novel variational sparse coding approach this dictionary is used to infer strong edge priors. Additionally to the traditional sparse coding constraints the difference in the overlap of neighboring edge patches is minimized in our optimization. These edge priors are used in a novel variational superresolution as anisotropic guidance of the higher order regularization. Both the sparse coding and the variational superresolution of the depth are solved based on a primal-dual formulation. In an exhaustive numerical and visual evaluation we show that our method clearly outperforms existing approaches on multiple real and synthetic datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于示例的边缘表示的变分深度超分辨率
本文提出了一种新的深度图像超分辨率方法,该方法结合了基于样例的上采样和基于已知模糊核的变分超分辨率的最新进展。大多数传统的深度超分辨率方法都试图使用额外的高分辨率强度图像作为超分辨率的指导。在我们的方法中,我们从高分辨率和低分辨率的外部数据库中学习边缘先验字典。在一种新的变分稀疏编码方法中,使用该字典来推断强边缘先验。除了传统的稀疏编码约束外,我们的优化还最小化了相邻边缘补丁重叠的差异。在一种新的变分超分辨中,这些边缘先验被用作高阶正则化的各向异性引导。稀疏编码和深度的变分超分辨率都是基于原始对偶公式求解的。在详尽的数值和视觉评估中,我们表明我们的方法在多个真实和合成数据集上明显优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Listening with Your Eyes: Towards a Practical Visual Speech Recognition System Using Deep Boltzmann Machines Self-Calibration of Optical Lenses Single Image Pop-Up from Discriminatively Learned Parts Multi-task Recurrent Neural Network for Immediacy Prediction Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1