Effects of boiling on iron particles in drinking water

Penglu Li, Y. Zhuang, Baoyou Shi, Kefeng Zhang
{"title":"Effects of boiling on iron particles in drinking water","authors":"Penglu Li, Y. Zhuang, Baoyou Shi, Kefeng Zhang","doi":"10.2166/aqua.2022.244","DOIUrl":null,"url":null,"abstract":"\n Discoloration events in drinking water distribution systems (DWDSs) caused by iron particles have occurred worldwide, and boiling has been applied in drinking water treatment households globally, but the effects of boiling on iron particles are not clear. Here, the effect of boiling on different kinds of iron particles (including loose deposits from the DWDS and their main components FeOOH, Fe2O3, and Fe3O4) was studied. At 10 mg/L, the turbidity values before/after boiling of Fe2O3, Fe3O4, and FeOOH were 134.00/121.00, 25.07/21.22, and 120.40/114.20 NTU, respectively. All the particles had a lower degree of crystallinity after boiling. After boiling, the number of particles in loose deposits increased and the particle size decreased, while iron oxides were on the contrary. Among the three iron oxides, the existence of Fe3O4 and Fe2O3 had different effects on disinfection by-products (DBPs) formation. The activity of microorganisms was the highest under particle concentration of 0.1 mg/L than other concentrations for all the particles, but the total microbiological risks were still very low after boiling. Thus, the boiling treatment would increase the turbidity and risks of the particles. As the particle concentration under low concentration is hard to be found, this risk is hard to be found.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2022.244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Discoloration events in drinking water distribution systems (DWDSs) caused by iron particles have occurred worldwide, and boiling has been applied in drinking water treatment households globally, but the effects of boiling on iron particles are not clear. Here, the effect of boiling on different kinds of iron particles (including loose deposits from the DWDS and their main components FeOOH, Fe2O3, and Fe3O4) was studied. At 10 mg/L, the turbidity values before/after boiling of Fe2O3, Fe3O4, and FeOOH were 134.00/121.00, 25.07/21.22, and 120.40/114.20 NTU, respectively. All the particles had a lower degree of crystallinity after boiling. After boiling, the number of particles in loose deposits increased and the particle size decreased, while iron oxides were on the contrary. Among the three iron oxides, the existence of Fe3O4 and Fe2O3 had different effects on disinfection by-products (DBPs) formation. The activity of microorganisms was the highest under particle concentration of 0.1 mg/L than other concentrations for all the particles, but the total microbiological risks were still very low after boiling. Thus, the boiling treatment would increase the turbidity and risks of the particles. As the particle concentration under low concentration is hard to be found, this risk is hard to be found.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
煮沸对饮用水中铁颗粒的影响
铁颗粒引起的饮用水分配系统变色事件在世界范围内都有发生,沸煮在世界范围内的饮用水处理家庭中也得到了应用,但沸煮对铁颗粒的影响尚不清楚。本文研究了沸煮对不同种类铁颗粒(包括DWDS及其主要成分FeOOH、Fe2O3和Fe3O4的松散沉积物)的影响。在10 mg/L条件下,Fe2O3、Fe3O4和FeOOH沸腾前后的浊度值分别为134.00/121.00、25.07/21.22和120.40/114.20 NTU。所有的颗粒在沸腾后结晶度都降低了。沸腾后,松散沉积物中的颗粒数增加,颗粒尺寸减小,而氧化铁则相反。在三种氧化铁中,Fe3O4和Fe2O3的存在对消毒副产物(DBPs)的形成有不同的影响。在颗粒浓度为0.1 mg/L时,所有颗粒的微生物活性最高,但煮沸后的总微生物风险仍然很低。因此,沸腾处理会增加颗粒的浊度和风险。由于低浓度下的颗粒浓度很难被发现,所以这种风险很难被发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of oxidative damage in Escherichia coli caused by epigallocatechin gallate (EGCG) in the presence of calcium ions Mechanistic action of pesticides on pests and their consequent effect on fishes and human health with remediation strategies Assessment of water demand and potential water sources to face future water scarcity of hilly regions A data quality assessment framework for drinking water distribution system water quality time series datasets Development and optimization of the dye removal process by Trichoderma reesei using starch effluent as a growth supplement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1