Development and optimization of the dye removal process by Trichoderma reesei using starch effluent as a growth supplement

Shweta Kalia, Saurabh Samuchiwal, Vidushi Dhaka, A. Malik
{"title":"Development and optimization of the dye removal process by Trichoderma reesei using starch effluent as a growth supplement","authors":"Shweta Kalia, Saurabh Samuchiwal, Vidushi Dhaka, A. Malik","doi":"10.2166/aqua.2023.003","DOIUrl":null,"url":null,"abstract":"The textile industry generates enormous starch effluent from the desizing process that can be utilized as a nutrient source for fungal growth and simultaneous dye decolorization. In the present study, Trichoderma reesei was used as a potential fungal isolate for the decolorization of reactive dyes using a minimal salt media for growth. The dye removal of Reactive blue 13, Reactive red 198, Reactive yellow 176, and Reactive black 5 were 95.35, 88.17, 86.01, and 94.84 mg L−1, respectively, by fungal biomass at 100 mg L−1 of initial dye concentration in 48 h was achieved. T. reesei showed decolorization of dyes at initial concentrations upto 500 mg L−1 with high dye uptake capacity. The glucose (5 g L−1) and yeast extracts (2.5 g L−1) were optimal for maximum dye decolorization. The utilization of starch effluent as an alternative nutrient source supplemented with 3.5 g L−1 glucose as growth media by T. reesei showed >85% of decolorization of Reactive blue 13 (100–200 mg L−1). Thus, starch effluent could be partially supplemented with glucose to support fungal growth and dye decolorization, eliminating the requirement of minimal salts for dye decolorization that follows a sustainable approach.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2023.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The textile industry generates enormous starch effluent from the desizing process that can be utilized as a nutrient source for fungal growth and simultaneous dye decolorization. In the present study, Trichoderma reesei was used as a potential fungal isolate for the decolorization of reactive dyes using a minimal salt media for growth. The dye removal of Reactive blue 13, Reactive red 198, Reactive yellow 176, and Reactive black 5 were 95.35, 88.17, 86.01, and 94.84 mg L−1, respectively, by fungal biomass at 100 mg L−1 of initial dye concentration in 48 h was achieved. T. reesei showed decolorization of dyes at initial concentrations upto 500 mg L−1 with high dye uptake capacity. The glucose (5 g L−1) and yeast extracts (2.5 g L−1) were optimal for maximum dye decolorization. The utilization of starch effluent as an alternative nutrient source supplemented with 3.5 g L−1 glucose as growth media by T. reesei showed >85% of decolorization of Reactive blue 13 (100–200 mg L−1). Thus, starch effluent could be partially supplemented with glucose to support fungal growth and dye decolorization, eliminating the requirement of minimal salts for dye decolorization that follows a sustainable approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
里氏木霉以淀粉废水为生长补充物脱色工艺的开发与优化
纺织工业在退浆过程中产生大量的淀粉废水,这些废水可以用作真菌生长的营养源,同时也可以用于染料脱色。在本研究中,里氏木霉被用作一种潜在的分离真菌,用于活性染料的脱色,使用最低盐培养基进行生长。在初始染料浓度为100 mg L−1的条件下,真菌生物量对活性蓝13、活性红198、活性黄176和活性黑5的去除率分别为95.35、88.17、86.01和94.84 mg L−1。T. reesei显示,在初始浓度高达500 mg L−1时,染料脱色能力强,染料吸收能力强。葡萄糖(5 g L−1)和酵母提取物(2.5 g L−1)对染料脱色效果最佳。利用淀粉废水作为替代营养源,并添加3.5 g L−1葡萄糖作为生长培养基,T. reesei对活性蓝13 (100-200 mg L−1)的脱色率>85%。因此,淀粉废水可以部分补充葡萄糖,以支持真菌生长和染料脱色,消除了对染料脱色的最低盐的要求,这是一种可持续的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of oxidative damage in Escherichia coli caused by epigallocatechin gallate (EGCG) in the presence of calcium ions Mechanistic action of pesticides on pests and their consequent effect on fishes and human health with remediation strategies Assessment of water demand and potential water sources to face future water scarcity of hilly regions A data quality assessment framework for drinking water distribution system water quality time series datasets Development and optimization of the dye removal process by Trichoderma reesei using starch effluent as a growth supplement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1