Application of Data Driven techniques to Predict N2O Emission in Full-scale WWTPs

M. Danishvar, Vasileia Vasilaki, Zhengwen Huang, E. Katsou, A. Mousavi
{"title":"Application of Data Driven techniques to Predict N2O Emission in Full-scale WWTPs","authors":"M. Danishvar, Vasileia Vasilaki, Zhengwen Huang, E. Katsou, A. Mousavi","doi":"10.1109/INDIN.2018.8472075","DOIUrl":null,"url":null,"abstract":"A number of data analytics techniques are deployed to measure the influence of various waste water treatment operational parameters against the nitrous oxide ($\\text{N}_{\\mathbf {2}}$O) emission. N2O is a major threat to the ozone layer and constitutes 80% of total Greenhouse Gas emissions of Waste Water Treatment Plants (WWTPs). The measurement and prediction of N2O emission from WWTP is challenging and costly. Thus, it is important to identify key control parameters that allows for accurately predicting and reducing N2O generation and emission. The current work compares various data driven techniques that identify key parameters and methods of predicting N2O emission. It provides insight to the suitability of each technique for control and optimisation of the target process. The main contribution of this research is introducing two new techniques that applied first time in WWTPs and could cover some current techniques shortcomings in real-time.","PeriodicalId":6467,"journal":{"name":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","volume":"29 1","pages":"993-997"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2018.8472075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A number of data analytics techniques are deployed to measure the influence of various waste water treatment operational parameters against the nitrous oxide ($\text{N}_{\mathbf {2}}$O) emission. N2O is a major threat to the ozone layer and constitutes 80% of total Greenhouse Gas emissions of Waste Water Treatment Plants (WWTPs). The measurement and prediction of N2O emission from WWTP is challenging and costly. Thus, it is important to identify key control parameters that allows for accurately predicting and reducing N2O generation and emission. The current work compares various data driven techniques that identify key parameters and methods of predicting N2O emission. It provides insight to the suitability of each technique for control and optimisation of the target process. The main contribution of this research is introducing two new techniques that applied first time in WWTPs and could cover some current techniques shortcomings in real-time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动技术在全规模污水处理厂N2O排放预测中的应用
采用了许多数据分析技术来测量各种废水处理操作参数对氧化亚氮($\text{N}_{\mathbf {2}}$O)排放的影响。一氧化二氮是对臭氧层的主要威胁,占废水处理厂温室气体排放总量的80%。污水处理厂N2O排放的测量和预测是具有挑战性和昂贵的。因此,重要的是要确定关键的控制参数,允许准确预测和减少N2O的产生和排放。目前的工作比较了各种数据驱动的技术,确定了预测N2O排放的关键参数和方法。它提供了对控制和优化目标过程的每种技术的适用性的见解。本研究的主要贡献是介绍了两种首次应用于污水处理厂的新技术,可以实时弥补当前技术的一些缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPT - A decision-model-based Approach for Modeling Collaborative Assembly and Manufacturing Tasks Grey-box Model Identification and Fault Detection of Wind Turbines Using Artificial Neural Networks An Algorithmic Method for Tampering-Proof and Privacy-Preserving Smart Metering Digital Transformation as the Subject of Discursive Analysis Condition monitoring of wind-power units using the Derivative-free nonlinear Kalman Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1