Hydroxyl-functionalized Graphene from Spent Batteries as Efficient Adsorbent for Amoxicillin

Q3 Chemical Engineering Chemical engineering transactions Pub Date : 2021-06-15 DOI:10.3303/CET2186056
J. C. S. Aguilar, Chosel P. Lawagon, James Mark M. Gallawan, Jeralyn G. Cabotaje
{"title":"Hydroxyl-functionalized Graphene from Spent Batteries as Efficient Adsorbent for Amoxicillin","authors":"J. C. S. Aguilar, Chosel P. Lawagon, James Mark M. Gallawan, Jeralyn G. Cabotaje","doi":"10.3303/CET2186056","DOIUrl":null,"url":null,"abstract":"A chemically exfoliated graphene, functionalized with hydroxide, was prepared and used as an adsorbent for the removal of amoxicillin from aqueous solutions. This nanocomposite was recovered from chemically exfoliated graphite rods present in spent zinc-carbon batteries. The graphene-OH was determined to have a sheet-like morphology with high surface area (As,BET = 181 m2 g-1) . Its adsorption characteristics were observed at different adsorption time, initial amoxicillin concentrations, and adsorbent dosage to establish the kinetics, isotherm, and optimal adsorption conditions. Pseudo-first-order and pseudo-second-order models were used to study the kinetics, while Freundlich and Langmuir models were used to study the adsorption isotherms. Results showed that amoxicillin adsorption fitted with Langmuir isotherm with higher correlation than the Freundlich isotherm and followed the pseudo-second-order rate model. The removal efficiency increased as the adsorbent dosage was also increased. Similarly, increasing the adsorbent dosage from 1 g/L to 20 g/L, the adsorption capacity decreased from 36 mg/g to 4 mg/g. For recyclability, the adsorptivity of graphene – OH was shown to be slightly decreasing over the 5-cycles (99.75 % to 95.37 %). Based on the results, hydroxyl-functionalized graphene demonstrated high industrial potential for amoxicillin wastewater treatment.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"43 1","pages":"331-336"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2186056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A chemically exfoliated graphene, functionalized with hydroxide, was prepared and used as an adsorbent for the removal of amoxicillin from aqueous solutions. This nanocomposite was recovered from chemically exfoliated graphite rods present in spent zinc-carbon batteries. The graphene-OH was determined to have a sheet-like morphology with high surface area (As,BET = 181 m2 g-1) . Its adsorption characteristics were observed at different adsorption time, initial amoxicillin concentrations, and adsorbent dosage to establish the kinetics, isotherm, and optimal adsorption conditions. Pseudo-first-order and pseudo-second-order models were used to study the kinetics, while Freundlich and Langmuir models were used to study the adsorption isotherms. Results showed that amoxicillin adsorption fitted with Langmuir isotherm with higher correlation than the Freundlich isotherm and followed the pseudo-second-order rate model. The removal efficiency increased as the adsorbent dosage was also increased. Similarly, increasing the adsorbent dosage from 1 g/L to 20 g/L, the adsorption capacity decreased from 36 mg/g to 4 mg/g. For recyclability, the adsorptivity of graphene – OH was shown to be slightly decreasing over the 5-cycles (99.75 % to 95.37 %). Based on the results, hydroxyl-functionalized graphene demonstrated high industrial potential for amoxicillin wastewater treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
废电池羟基功能化石墨烯作为阿莫西林的高效吸附剂
制备了一种氢氧化物功能化的化学剥落石墨烯,并将其作为吸附剂从水溶液中去除阿莫西林。这种纳米复合材料是从废锌碳电池中化学剥落的石墨棒中回收的。石墨烯- oh具有高表面积的片状形貌(As,BET = 181 m2 g-1)。在不同的吸附时间、初始阿莫西林浓度和吸附剂用量下观察其吸附特性,建立吸附动力学、等温线和最佳吸附条件。采用拟一阶和拟二阶模型研究吸附动力学,采用Freundlich和Langmuir模型研究吸附等温线。结果表明,阿莫西林吸附符合Langmuir等温线,其相关性高于Freundlich等温线,且符合拟二阶速率模型。吸附剂投加量越大,去除率越高。同样,当吸附剂用量从1 g/L增加到20 g/L时,吸附量从36 mg/g下降到4 mg/g。在可回收性方面,石墨烯- OH的吸附率在5次循环中略有下降(99.75% ~ 95.37%)。结果表明,羟基功能化石墨烯在处理阿莫西林废水方面具有很高的工业潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical engineering transactions
Chemical engineering transactions Chemical Engineering-Chemical Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊介绍: Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering
期刊最新文献
Incorporation of a Filter Media by Cellulose Fibers in Biosafety from Sugarcane Bagasse by Alkaline Hydrolysis Air Deterioration Gases in the Social Confinement Period by COVID-19 in Bogotá, Quito, Lima, Santiago de Chile and Buenos Aires Modelling of Methanol Synthesis The Potential of Liquefied Oxygen Storage for Flexible Oxygen-Pressure Swing Adsorption Unit Optimal Operational Profiles in an Electrodialysis Unit for Ion Recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1