Anomaly Scoring Model for Diagnosis on Machine Condition and Health Management

B. Joung, Zhongtian Li, J. Sutherland
{"title":"Anomaly Scoring Model for Diagnosis on Machine Condition and Health Management","authors":"B. Joung, Zhongtian Li, J. Sutherland","doi":"10.1115/msec2022-85459","DOIUrl":null,"url":null,"abstract":"\n The reliability of manufacturing equipment is critical for ensuring the productivity and energy efficiency of a manufacturing facility. An unexpected machine breakdown may lead to unexpected downtime, disruption of manufacturing schedule, lower production efficiency, higher operation and maintenance cost. The recent development in machine learning and artificial intelligence enables data-driven Predictive Maintenance (PdM) by means of perceiving the dynamics of manufacturing systems and abstracting them into learnable features to provide a better interpretation of machine failures or unplanned downtimes. PdM, often translated to Prognostics and Health Management (PHM), aims to continue the optimal/normal operation of manufacturing systems. Often, vibration is used as a proxy of an early indicator of impending failure. In this study, tri-axial acceleration data collected from the two different machines are utilized. PdM-based strategies for machine condition monitoring and smart scheduling of equipment maintenance using an anomaly scoring model are discussed for two critical elements in a manufacturing system: 1) Chiller 2) Compressor. An anomaly scoring model is developed to extract meaningful information from the vibration data.","PeriodicalId":23676,"journal":{"name":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The reliability of manufacturing equipment is critical for ensuring the productivity and energy efficiency of a manufacturing facility. An unexpected machine breakdown may lead to unexpected downtime, disruption of manufacturing schedule, lower production efficiency, higher operation and maintenance cost. The recent development in machine learning and artificial intelligence enables data-driven Predictive Maintenance (PdM) by means of perceiving the dynamics of manufacturing systems and abstracting them into learnable features to provide a better interpretation of machine failures or unplanned downtimes. PdM, often translated to Prognostics and Health Management (PHM), aims to continue the optimal/normal operation of manufacturing systems. Often, vibration is used as a proxy of an early indicator of impending failure. In this study, tri-axial acceleration data collected from the two different machines are utilized. PdM-based strategies for machine condition monitoring and smart scheduling of equipment maintenance using an anomaly scoring model are discussed for two critical elements in a manufacturing system: 1) Chiller 2) Compressor. An anomaly scoring model is developed to extract meaningful information from the vibration data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器状态诊断与健康管理的异常评分模型
制造设备的可靠性对于确保生产设施的生产力和能源效率至关重要。意外的机器故障可能会导致意外停机,扰乱生产计划,降低生产效率,增加运行和维护成本。机器学习和人工智能的最新发展通过感知制造系统的动态并将其抽象为可学习的特征来实现数据驱动的预测性维护(PdM),从而更好地解释机器故障或意外停机。PdM通常被翻译为预测和健康管理(PHM),旨在使制造系统保持最佳/正常运行。通常,振动被用作即将发生故障的早期指示的代理。在本研究中,使用了从两台不同的机器收集的三轴加速度数据。针对制造系统中的两个关键部件:1)冷水机组2)压缩机,讨论了基于pdm的机器状态监测策略和基于异常评分模型的设备维护智能调度。为了从振动数据中提取有意义的信息,建立了异常评分模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical and sensory properties of burgers affected by different dry ageing time of beef neck Inovacija proizvoda HRZZ projekta “Inovativni funkcionalni proizvodi od janjećeg mesa“ Bioaktivni peptidi u pršutima Samodostatnost u proizvodnji svinjskog mesa u Republici Hrvatskoj Policiklički aromatski ugljikovodici (PAH) u tradicionalno dimljenim mesnim proizvodima
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1