Khatarina Meldawati Pasaribu, S. Gea, S. Ilyas, Tamrin
{"title":"The Effectiveness of Chitosan as an Antimicrobial on Bacterial Cellulose-based Scaffold Skin Tissue Engineering","authors":"Khatarina Meldawati Pasaribu, S. Gea, S. Ilyas, Tamrin","doi":"10.5220/0008864701780181","DOIUrl":null,"url":null,"abstract":"It is recognized that bacterial cellulose (BC) is used as a scaffold for tissue engineering. However, pristine BC is not ideal enough to be applied as a scaffold because bacterial cellulose does not have antimicrobial activity. The aim of this study was to evaluate the antmicrobial activity of bacterial cellulose and their composites. BC gel, produced by Acetobacter xylinum with HS medium as a carbohydrate resources, was immersed into chitosan (Ch) and collagen (Co) by ex-situ approach to produce BC/Ch/Col. The same procedures were repeated for BC/Ch, BC/Col, and BC/Col/Ch. The effectiveness of antimicrobial activity was carried out using disk paper to inhibit the growth of pathogen bacteria such as Escherichia coli and Staphylococcus aureus. The results showed that BC/Ch has the highest antimicrobial activity against E. coli and S. aureus with the inhibition zone of 10.15 mm and 7.9 mm, respectively.","PeriodicalId":20533,"journal":{"name":"Proceedings of the 1st International Conference on Chemical Science and Technology Innovation","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on Chemical Science and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0008864701780181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is recognized that bacterial cellulose (BC) is used as a scaffold for tissue engineering. However, pristine BC is not ideal enough to be applied as a scaffold because bacterial cellulose does not have antimicrobial activity. The aim of this study was to evaluate the antmicrobial activity of bacterial cellulose and their composites. BC gel, produced by Acetobacter xylinum with HS medium as a carbohydrate resources, was immersed into chitosan (Ch) and collagen (Co) by ex-situ approach to produce BC/Ch/Col. The same procedures were repeated for BC/Ch, BC/Col, and BC/Col/Ch. The effectiveness of antimicrobial activity was carried out using disk paper to inhibit the growth of pathogen bacteria such as Escherichia coli and Staphylococcus aureus. The results showed that BC/Ch has the highest antimicrobial activity against E. coli and S. aureus with the inhibition zone of 10.15 mm and 7.9 mm, respectively.