Exploring stock market dynamism in multi-nations with genetic algorithm, support vector regression, and optimal technical analysis

Deng-Yiv Chiu, Shin-Yi Chian
{"title":"Exploring stock market dynamism in multi-nations with genetic algorithm, support vector regression, and optimal technical analysis","authors":"Deng-Yiv Chiu, Shin-Yi Chian","doi":"10.4156/JDCTA.VOL5.ISSUE3.34","DOIUrl":null,"url":null,"abstract":"in this research, an approach in combination with support vector regression (SVR), genetic algorithm (GA), and optimal technical analysis is proposed to explore stock dynamism of multi-nations under different economical environments. First, we apply full search algorithm to select the optimal number of trading days used to calculate the technical indicator values. Genetic algorithm is then used to search the best combination of parameters for SVR kernel function and technical indicators used as SVR input variables. Finally, support vector regression is then used to classify stock data based on the characteristics of non-linear classification. Also, we apply sliding windows to training data to build a steady stock exploratory approach. The data sources are stock data from four countries with different economic development degree. They include United States of America, Singapore, Taiwan, and Indonesia. In empirical results, the input variables of middle-long-term technical indicators can bring stable profits and developed country shows better efficient market.","PeriodicalId":22360,"journal":{"name":"The 6th International Conference on Networked Computing and Advanced Information Management","volume":"42 1","pages":"694-699"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 6th International Conference on Networked Computing and Advanced Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JDCTA.VOL5.ISSUE3.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

in this research, an approach in combination with support vector regression (SVR), genetic algorithm (GA), and optimal technical analysis is proposed to explore stock dynamism of multi-nations under different economical environments. First, we apply full search algorithm to select the optimal number of trading days used to calculate the technical indicator values. Genetic algorithm is then used to search the best combination of parameters for SVR kernel function and technical indicators used as SVR input variables. Finally, support vector regression is then used to classify stock data based on the characteristics of non-linear classification. Also, we apply sliding windows to training data to build a steady stock exploratory approach. The data sources are stock data from four countries with different economic development degree. They include United States of America, Singapore, Taiwan, and Indonesia. In empirical results, the input variables of middle-long-term technical indicators can bring stable profits and developed country shows better efficient market.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用遗传算法、支持向量回归和最优技术分析探讨多国股票市场动态
本文提出了一种结合支持向量回归(SVR)、遗传算法(GA)和最优技术分析的方法来研究不同经济环境下多国的存量动态。首先,采用全搜索算法选择计算技术指标值的最优交易日数。然后利用遗传算法搜索SVR核函数参数和作为SVR输入变量的技术指标参数的最佳组合。最后,基于非线性分类的特点,利用支持向量回归对存量数据进行分类。此外,我们将滑动窗口应用于训练数据,以建立稳定的库存探索方法。数据来源为四个经济发展程度不同的国家的存量数据。它们包括美国、新加坡、台湾和印度尼西亚。实证结果表明,中长期技术指标的输入变量能够带来稳定的利润,发达国家表现出更好的有效市场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring stock market dynamism in multi-nations with genetic algorithm, support vector regression, and optimal technical analysis A framework of PBL strategy integrated in LMS and a ubiquitous learning environment Item selection strategic via social network analyze The safety design of the laboratory monitoring system The Design and Implementation of Behavior-Driven Artificial Neural Network Computing System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1