Fabrication and characterizations of high density Si3N4 - ZrO2 ceramics

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of metals, materials and minerals Pub Date : 2023-07-26 DOI:10.55713/jmmm.v33i3.1621
Kamol Traipanya, T. Wasanapiarnpong, C. Mongkolkachit
{"title":"Fabrication and characterizations of high density Si3N4 - ZrO2 ceramics","authors":"Kamol Traipanya, T. Wasanapiarnpong, C. Mongkolkachit","doi":"10.55713/jmmm.v33i3.1621","DOIUrl":null,"url":null,"abstract":"Silicon nitride and zirconia were mixed with SiO2, MgO, Y2O3 as sintering additives and pressureless sintered at 1650℃ in N2 atmosphere for 2 h. The XRD results showed a-Si3N4 was partially transformed to b-Si3N4 with 3:3:5 weight ratio of SiO2 : MgO : Y2O3. However, at 5 wt% of ZrO2 addition promoted phase transformation of a-Si3N4 to b-Si3N4 while 35 wt% of ZrO2 completely transformed to b-Si3N4 phase. Si3N4 has a lower density than ZrO2, bulk density of samples increases in correlation with the amount of ZrO2. Because there was no difference in hardness and flexural strength between sintered Si3N4 samples with hardness of 13.41 GPa and 648.13 MPa along with increasing ZrO2 variation up to 55 wt%. Furthermore, with 75 wt% ZrO2, the hardness was reduced to 10.57 GPa and the flexural strength decreased to 208.16 MPa. SEM images of Si3N4 samples demonstrated the dense microstructure and 5 wt% ZrO2 showed homogeneous ZrO2 distributed among the Si3N4 grains. As a result, the hexagonal rod-like form of b-Si3N4 is clearly visible in 75 wt% ZrO2. Therefore, Si3N4 with ZrO2 can be sintered with the homogeneous microstructure of the a-Si3N4 to b-Si3N4 transformation and tolerable mechanical properties vary with ZrO2 content.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"16 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i3.1621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon nitride and zirconia were mixed with SiO2, MgO, Y2O3 as sintering additives and pressureless sintered at 1650℃ in N2 atmosphere for 2 h. The XRD results showed a-Si3N4 was partially transformed to b-Si3N4 with 3:3:5 weight ratio of SiO2 : MgO : Y2O3. However, at 5 wt% of ZrO2 addition promoted phase transformation of a-Si3N4 to b-Si3N4 while 35 wt% of ZrO2 completely transformed to b-Si3N4 phase. Si3N4 has a lower density than ZrO2, bulk density of samples increases in correlation with the amount of ZrO2. Because there was no difference in hardness and flexural strength between sintered Si3N4 samples with hardness of 13.41 GPa and 648.13 MPa along with increasing ZrO2 variation up to 55 wt%. Furthermore, with 75 wt% ZrO2, the hardness was reduced to 10.57 GPa and the flexural strength decreased to 208.16 MPa. SEM images of Si3N4 samples demonstrated the dense microstructure and 5 wt% ZrO2 showed homogeneous ZrO2 distributed among the Si3N4 grains. As a result, the hexagonal rod-like form of b-Si3N4 is clearly visible in 75 wt% ZrO2. Therefore, Si3N4 with ZrO2 can be sintered with the homogeneous microstructure of the a-Si3N4 to b-Si3N4 transformation and tolerable mechanical properties vary with ZrO2 content.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高密度Si3N4 - ZrO2陶瓷的制备与表征
将氮化硅和氧化锆与SiO2、MgO、Y2O3混合,在1650℃、N2气氛下无压烧结2 h。XRD结果表明,a-Si3N4部分转化为b-Si3N4, SiO2: MgO: Y2O3的质量比为3:3:5。当ZrO2添加量为5 wt%时,a-Si3N4相变为b-Si3N4,而ZrO2添加量为35 wt%时,则完全相变为b-Si3N4。Si3N4的密度低于ZrO2,样品的容重随ZrO2的加入而增加。因为在硬度分别为13.41 GPa和648.13 MPa的Si3N4烧结试样中,硬度和抗弯强度没有差异,但ZrO2的变化幅度增大到55 wt%。当ZrO2质量分数为75 wt%时,合金的硬度降至10.57 GPa,抗折强度降至208.16 MPa。Si3N4样品的SEM图像显示出致密的微观结构,5 wt% ZrO2显示出均匀的ZrO2分布在Si3N4晶粒中。结果,在75% ZrO2中,b-Si3N4的六角形棒状结构清晰可见。因此,添加ZrO2的Si3N4可以烧结成由a-Si3N4向b-Si3N4转变的均匀组织,其耐受性力学性能随ZrO2含量的变化而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
期刊最新文献
Photocatalytic degradation of ciprofloxacin drug utilizing novel PVDF/polyaniline/ lanthanum strontium manganate@Ag composites Dispersion mechanism of nanoparticles and its role on mechanical, thermal and electrical properties of epoxy nanocomposites - A Review Sustainable innovation in ballistic vest design: Exploration of polyurethane-coated hemp fabrics and reinforced sandwich epoxy composites against 9 mm and .40 S&W bullets Electrical and water resistance properties of conductive paste based on gold/silver composites Review of materials, functional components, fabrication technologies and assembling characteristics for polymer electrolyte membrane fuel cells (PEMFCs) – An update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1